announcements

- Problem Set 8 is due today
- Drill will be happening this week ... maybe
- Next Monday is a day off
- Problem Set 7's answer key is done, but grading is not

sometimes data analysts make mistakes

Pohanna Rickne ... Banning the purchase of sex DOES NOT increase cases of reported rape. A re-analysis of Ciacci (2024) shows that the paper's headline result comes from an erroneous use of Stata's regression command.

A thread from @Jopieboy, @OlleFolke, and me 1/11

2

mediation analysis: wrap-up

April 1, 2024

thinking about mediation

complexities of third-variable control & other considerations

4

8

- imagine you are interested in the relationship between intelligence (indexed by IQ) and conscientiousness
- you find a large sample of college students and find

... r = <mark>-</mark>.37

• what?!

v.the100.ci/2017/03/14/that-one-w

what's going on?

- college students tend to be higher IQ that the general population; they also tend to be higher with respect to conscientiousness
- that is, both of these variables are predictors of college-student membership; they "collide"
- so selecting from the college-student population "conditions on a collider", creating a (strange) relationship that doesn't exist in the whole population

11

third-variable patterns (problems?), cataloged, probably not completely

- confounds
- colliders
- suppressors
- mediators
- covariates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819361/ https://www.ncbi.nlm.nih.gov/pubmed/28575894

13

mediation extensions

19

non-independence in data

introduction to non-independence, its consequences, and repeated-measures designs

20

assumptions made in modeling

- these are about residuals! (not about predictors)
- 1. they're normally distributed
- 2. they have constant variance (homoscedasticity)
- 3. they are independent of one another

independence?

- independence means that any one individual's residual **can't** be used to estimate another's
- when is this violated?
- usually it's a *feature* of the research design
- common situations
 - repeated-measures studies
 - longitudinal studies
 - naturally-clustered data (e.g., students in classrooms)
 - research with dyads or group interactions

22

- positive nonindependence
- scores (residuals) are positively related
- negative nonindependence
- scores (residuals) are negatively related

23

positive nonindependence (an example)

 if we ask couples to rate satisfaction with their relationship, we'd likely see high scores paired with high scores and low scores with low scores

couple	partner 1	partner 2
а	1	1
b	4	3
с	6	7
d	5	6

 one person's score predicts the other's

negative nonindependence (an example)

 if we ask couples to estimate how much housework each person does, we'd likely see high scores paired with low scores and vice versa

couple	partner 1	partner 2
а	30%	80%
b	40%	75%
с	70%	40%
d	20%	100%

 one person's score predicts the other's

25

consequences of nonindependence

- this depends on the type (positive or negative)
- and on how nonindependence fits within the design
- it can in some circumstances increase Type I errors, and in others it can increase Type II errors