<section-header><list-item><list-item><list-item>

1

analysis of RM designs

April 10, 2024

2

a hypothetical RM study

- imagine a study where individuals are asked prepare for a quiz using three different strategies: read and reread a passage; answer prepared comprehension questions; create and answer their own comprehension questions
- each person does this once for each strategy (it's a repeated-measures design)
- we counterbalance the order of the strategies
- the outcome is the quiz score (# correct)

hypothetical results (with marginal means)

student	reread	prepared Qs	create Qs	person Ms
a	2	5	8	5
b	3	9	6	6
с	8	10	12	10
d	6	13	11	10
e	5	8	11	8
f	6	9	12	9
condition Ms	5	9	10	

costs 5 parameters to model between-person differences

7

 $\hat{Y} = b_0 + groups + persons$

- this will cost us *n* 1 parameters
- but it will gain us power
- and residuals will no longer be correlated within person

residuals from model w/groups and persons as predictors

student	reread	prepared Qs	create Qs
а	0	-1	1
b	0	2	-2
с	1	-2	0
d	-1	2	-1
e	0	-1	1
f	0	-1	1

now residuals are no longer correlated within persons; and they're lower!

10

but: the RM ANOVA is underinformative

- notice the 2 df in the numerator
- this means that two parameters are being clumped together
- it's a better idea to do some *t*-tests!
- these will be *paired-samples* (*related-samples*) t-tests
- be thoughtful about FWER/FDR

more efficient parameterization

13

what are parameter estimates?

• imagine a three-condition experiment with the following condition means

*M*₁ = 5, M₂ = 9, M₃ = 10

- if we dummy code w/group 1 as the reference
- the parameter estimates will be
 - intercept = 5
 - dummy1 slope = 4
 - dummy2 slope = 5

14

slopes estimate population means & differences among them

- for conditions based on an IV, we care about these parameter estimates
- but if we estimate additional parameters when trying to manage nonindependence, we get parameters for each person, too
- but we don't care about the these!
- worse, we're spending one *df* for each personbased parameter that we don't care about

modeling individual differences efficiently

- if we care about individual differences and removing them from *MS*_{residual} (we do) ...
- ... instead of estimating a parameter for each person ...
- ... why not estimate one parameter to estimate how much everyone differs?
- this is where variance is useful!

16

using variance to estimate individual differences

• instead of modeling like this

 $\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 \text{person} + b_4 \text{person} + b_5 \text{person} + \cdots$

• we can model like this

 $\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + var(\text{persons})$

- this will involve estimating a variance between persons, usually called "random intercepts"
- the lmer function in the lme4 package in R makes this easy

17

linear mixed models (LMMs)

- a benefit of modeling RM data w/LMMs is that everything we've learned (dummy variables, interactions, mean-centering, etc.) can be used
- this kind of modeling has become normative in areas of psychology and other fields where nonindependence is common
- in a one-factor RM design with no missing data, the RM ANOVA and its analogous LMM produce identical results
- results no longer converge if the design is more complex or if there are missing data

factorial repeatedmeasures designs

19

22

research questions (i.e., contrasts)

- is there an effect of study time?
- is there an effect of word type?
- does the effect of time interact with word type?

23

- for each person, find the mean for the concrete condition
- subtract the former from the latter
 do a single-sample t-test on the resulting y

do a single-sample t-test on the resulting values

	<u>1 m</u>	inute	2 minutes		3 minutes			
person	abstract	concrete	abstract	concrete	abstract	concrete	abstract	concrete
а	10	13	12	14	16	17		
b	8	12	9	12	11	13		
с	12	13	14	14	16	16		
d	15	17	16	17	19	20		
e	12	13	15	16	16	17		
mean	11.4	13.6	13.2	14.6	15.6	16.6		

one way to analyze: contrasts via single-sample *t*-tests

- for each person, find the mean for the abstract condition
 for each person find the mean for the constrate condition
- for each person, find the mean for the concrete condition
 subtract the former from the latter
- do a single-sample t-test on the resulting values

study time 1 minute 2 minutes 3 minutes person abstract concrete abstract concrete abstract concrete abstract concrete 17 13 14 12.67 10 12 16 h 8 12 q 12 11 13 16 9.33 14 12 15 13 17 14 17 14 16 16 19 d 20 16.67 13 15 16 16 17 14.33 mean 11.4 13.6 13.2 14.6 15.6 16.6

25

26

- for each person, find the mean for the concrete condition
- subtract the former from the latter

· do a single-sample t-test on the resulting values

	<u>1 mi</u>	inute	2 minutes		3 minutes		
erson	abstract	concrete	abstract	concrete	abstract	concrete	d
а	10	13	12	14	16	17	2
b	8	12	9	12	11	13	3
с	12	13	14	14	16	16	0.33
d	15	17	16	17	19	20	1.33
e	12	13	15	16	16	17	1
mean	11.4	13.6	13.2	14.6	15.6	16.6	

we could do a subset of simpleeffects tests

· within each study time condition, compare abstract vs concrete

	study time								
	<u>1 m</u>	inute	2 minutes		3 minutes				
person	abstract	concrete	abstract	concrete	abstract	concrete			
а	10	13	12	14	16	17			
b	8	12	9	12	11	13			
с	12	13	14	14	16	16			
d	15	17	16	17	19	20			
e	12	13	15	16	16	17			
mean	11.4	13.6	13.2	14.6	15.6	16.6			

28

other options: ezANOVA & all the t-tests

ezANOVA

- pros: easy to set up; conventional
- cons: the omnibus ANOVA is underinformative; focused contrasts difficult (at best) to execute, including "conventional" post-tests

all pairwise t-tests

- pros: easy to set up, informative
- cons: scattershot; low power if you care about FWER; may not include all contrasts of interest; no slopes; no SEs;

	(ez)ANO	VΔ	١					
	Effect	DFn	DFd	SSn	ssd	F	р	
1	(Intercept)	1	4	6020.833333	131.0	183.842239	0.0001712670	
2	studytime	2	8	65.866667	8.8	29.939394	0.0001929406	
3	wordtype	1	4	17.633333	6.2	11.376344	0.0279689588	
4	studytime:wordtype	2	8	1.866667	0.8	9.333333	0.0081000000	

all pairwise t-tests

|--|

abstract2	0.1287	-	-	-	-
abstract3	0.0152	0.1389	-	-	-
concrete1	0.2933	1.0000	0.9180	-	-
concrete2	0.0426	0.7741	1.0000	1.0000	-
concrete3	0.0067	0.0717	0.5116	0.0811	0.1658

P value adjustment method: bonferroni

31

