

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

a hypothetical RM study

- imagine a study where individuals are asked prepare for a quiz using three different strategies: read and reread a passage; answer prepared comprehension questions; create and answer their own comprehension questions
- each person does this once for each strategy (it's a repeated-measures design)
- we counterbalance the order of the strategies
\qquad
- the outcome is the quiz score (\# correct) \qquad
\qquad
hypothetical results (matched colors indicate subjects)

student	reread	prepared Qs	create Qs
a	2	5	8
b	3	9	6
c	8	10	12
d	6	13	11
e	5	8	11
f	6	9	12

4
residuals from model w/groups
(the usual analysis)

residuals from model w/groups (the usual analysis)
student reread prepared as create Qs a -3 -4 -2 b -2 0 -4 c 3 1 2 d 1 4 1 e 0 -1 1 f 1 0 2
residuals are correlated within persons; not good

residuals are correlated within persons; not good

5
hypothetical results
(with marginal means)

hypothetical results (with marginal means)				
student reread prepared as create Qs person Ms				
a	2	5	8	
b	3	9	6	
c	8	10	12	
d	6	13	11	
e	5	8	11	
f	6	9	12	
condition M s	$\mathbf{5}$	$\mathbf{9}$	$\mathbf{1 0}$	

costs 2 parameters to model between-condition differences
\qquad
hypothetical results
(with marginal means)

student	reread	prepared Qs	create Qs	person Ms
a	2	5	8	$\mathbf{5}$
b	3	9	6	$\mathbf{6}$
c	8	10	12	$\mathbf{1 0}$
d	6	13	11	$\mathbf{1 0}$
e	5	8	11	$\mathbf{8}$
f	6	9	12	$\mathbf{9}$
condition Ms	$\mathbf{5}$	$\mathbf{9}$	$\mathbf{1 0}$	

costs 5 parameters to model between-person differences

7
modeling individual differences
with person means

- new Model A

$$
\hat{Y}=b_{0}+\text { groups }+ \text { persons }
$$

- this will cost us $n-1$ parameters
- but it will gain us power
- and residuals will no longer be correlated within person

8

residuals from model w/groups and persons as predictors

student	reread	prepared Qs	create Qs
a	0	-1	1
b	0	2	-2
c	1	-2	0
d	-1	2	-1
e	0	-1	1
f	0	-1	1

now residuals are no longer correlated within persons; and they're lower!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10

but: the RM ANOVA is

 underinformative- notice the $2 d f$ in the numerator
- this means that two parameters are being clumped together
- it's a better idea to do some t-tests!
- these will be paired-samples (related-samples) ttests \qquad
- be thoughtful about FWER/FDR \qquad
\qquad
11
better than the ANOVA ... a series of pairwise comparisons

student	reread	prepared	create Qs	
a	2	5	8	
b	3	9	6	
c	8	10	12	
d	6	13	11	
e	5	8	11	
f	6	9	12	

you could do more-complex contrasts if you'd like (e.g., two conditions vs one)

more efficient parameterization

 13
what are parameter estimates?

- imagine a three-condition experiment with the following condition means

$$
M_{1}=5, M_{2}=9, M_{3}=10
$$

- if we dummy code w/group 1 as the reference
- the parameter estimates will be
- intercept = 5
- dummy1 slope $=4$
- dummy2 slope = 5

14

- but if we estimate additional parameters when
trying to manage nonindependence, we get parameters for each person, too
- but we don't care about the these!
- worse, we're spending one $d f$ for each personbased parameter that we don't care about

slopes estimate population means \& differences among them
 - for conditions based on an IV, we care about these parameter estimates

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \square
\qquad

modeling individual differences efficiently

- if we care about individual differences and removing them from $M S_{\text {residual }}$ (we do) ...
- ... instead of estimating a parameter for each person ...
- ... why not estimate one parameter to estimate how much everyone differs?
- this is where variance is useful!

using variance to estimate individual differences

- instead of modeling like this

$$
\hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} \text { person }+b_{4} \text { person }+b_{5} \text { person }+\cdot \cdot
$$

\qquad

- we can model like this

$$
\hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2}+\operatorname{var}(\text { persons })
$$

- this will involve estimating a variance between persons, usually called "random intercepts"
- the 1 mer function in the 1 me4 package in R makes this easy

17

linear mixed models (LMMs)

- a benefit of modeling RM data $w /$ LMMs is that everything we've learned (dummy variables, interactions, mean-centering, etc.) can be used
- this kind of modeling has become normative in areas of psychology and other fields where nonindependence is common
- in a one-factor RM design with no missing data, the RM ANOVA and its analogous LMM produce identical results
- results no longer converge if the design is more complex or if there are missing data
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 16
\qquad
\qquad
\qquad
\qquad

\qquad

19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 22
research questions (i.e., contrasts)

- is there an effect of study time?
- is there an effect of word type?
- does the effect of time interact with word type?
\qquad
\qquad
\qquad
\qquad
23

one way to analyze:

contrasts via single-sample t-tests

- for each person, find the mean for the abstract condition
- for each person, find the mean for the concrete condition
- subtract the former from the latter
- do a single-sample t-test on the resulting values \qquad

	study time															
	$\underline{\text { 1 minute }}$										$\underline{2 \text { minutes }}$		$\underline{3 \text { minutes }}$			
person	abstract	concrete	abstract	concrete	abstract	concrete	abstract	concrete								
a	10	13	12	14	16	17										
b	8	12	9	12	11	13										
c	12	13	14	14	16	16										
d	15	17	16	17	19	20										
e	12	13	15	16	16	17										
mean	11.4	13.6	13.2	14.6	15.6	16.6										

one way to analyze:

contrasts via single-sample t-tests

- for each person, find the mean for the abstract condition
- for each person, find the mean for the concrete condition
- subtract the former from the latter
- do a single-sample t-test on the resulting values

person	study time							
	1 minute		2 minutes		3 minutes		abstract	concrete
	abstract	concrete	abstract	concrete	abstract	concrete		
a	10	13	12	14	16	17	12.67	
b	8	12	9	12	11	13	9.33	
c	12	13	14	14	16	16	14	
d	15	17	16	17	19	20	16.67	
e	12	13	15	16	16	17	14.33	
mean	11.4	13.6	13.2	14.6	15.6	16.6		

25

one way to analyze:

contrasts via single-sample t-tests

- for each person, find the mean for the abstract condition
- for each person, find the mean for the concrete condition
- subtract the former from the latter
- do a single-sample t-test on the resulting values

26

one way to analyze:

contrasts via single-sample t-tests

- for each person, find the mean for the abstract condition
- for each person, find the mean for the concrete condition
- subtract the former from the latter
- do a single-sample t-test on the resulting values

	study time						
	$\underline{\text { 1 minute }}$		$\underline{2 \text { minutes }}$		$\underline{3 \text { minutes }}$		
person	abstract	concrete	abstract	concrete	abstract	concrete	d
a	10	13	12	14	16	17	2
b	8	12	9	12	11	13	3
c	12	13	14	14	16	16	0.33
d	15	17	16	17	19	20	1.33
e	12	13	15	16	16	17	1
mean	11.4	13.6	13.2	14.6	15.6	16.6	

we could do a subset of simple-

 effects tests```
- within each study time condition, compare abstract vs concrete
\begin{tabular}{ccccccc}
& \multicolumn{6}{c}{ study time } \\
\cline { 2 - 7 } & \multicolumn{7}{c}{\(\underline{\text { 1 minute }}\)} & \multicolumn{2}{c}{\(\underline{\text { 2 minutes }}\)} & \(\underline{3 \text { minutes }}\) \\
person & abstract & concrete & abstract & concrete & abstract & concrete \\
\hline a & 10 & 13 & 12 & 14 & 16 & 17 \\
b & 8 & 12 & 9 & 12 & 11 & 13 \\
c & 12 & 13 & 14 & 14 & 16 & 16 \\
d & 15 & 17 & 16 & 17 & 19 & 20 \\
e & 12 & 13 & 15 & 16 & 16 & 17 \\
\hline mean & 11.4 & 13.6 & 13.2 & 14.6 & 15.6 & 16.6
\end{tabular}
```

28
other options: ezANOVA \& all the t-tests
ezANOVA

- pros: easy to set up; conventional
- cons: the omnibus ANOVA is underinformative; focused contrasts difficult (at best) to execute, including "conventional" post-tests
all pairwise $t$-tests
- pros: easy to set up, informative
- cons: scattershot; low power if you care about FWER; may not include all contrasts of interest; no slopes; no SEs; :

29

| (ez)ANOVA |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Effect | Fn |  | SSn | SSd | F | p |
|  | (Intercept) | 1 | 4 | 6020.833333 | 131.0 | 183.842239 | 0.0001712670 |
|  | studytime | 2 | 8 | 65.866667 | 8.8 | 29.939394 | 0.0001929406 |
|  | wordtype | 1 | 4 | 17.633333 | 6.2 | 11.376344 | 0.0279689588 |
|  | ime:wordtype | 2 | 8 | 1.866667 | 0.8 | 9.333333 | 0.0081000000 |

## all pairwise t-tests

abstract1 abstract2 abstract3 concrete1 concrete2 abstract2 0.1287

| abstract3 | 0.0152 | 0.1389 | - | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- |
| concrete1 | 0.2933 | 1.0000 | 0.9180 | - | - |
| concrete2 | 0.0426 | 0.7741 | 1.0000 | 1.0000 | - |
| concrete3 | 0.0067 | 0.0717 | 0.5116 | 0.0811 | 0.1658 |

P value adjustment method: bonferroni
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ 31

## best option: linear mixed models

$\qquad$
$\qquad$

- easy to do

1mer(dv ~ studytime*wordtype + (1|subject), twofactorRM) $\qquad$

- what does this mean?
- the red part is the usual model
- the blue part is the new thing
- it indicates that we believe that each subject's intercept (i.e., mean) is randomly selected from some population of subject means, and we'd like to know the variance of it

32

## LMM output

- ANOVA table
npar Sum Sq Mean Sq F value

| studytime | 265.867 | 32.933 | 41.6878 |
| :--- | :--- | :--- | :--- |

wordtype $\quad 117.633 \quad 17.633 \quad 22.3207$
$\begin{array}{llllll}\text { studytime:wordtype } & 2 & 1.867 & 0.933 & 1.1814\end{array}$

- note: $F$-values do not match ezANOVA
- why? it's complicated (different assumptions about what constitutes error/noise, df calculation gets ugly) $\qquad$
$\qquad$

