intro to multilevel modeling

April 17, 2024

1

What is this about?

- Imagine we are interested in the extent to which a pre-test (X; mean-centered!) predicts standardized math test scores (Y) in 5th graders.
- We collect data from one classroom and find:

$$\hat{Y}_i = \beta_0 + \beta_1 X_i$$
$$\hat{Y}_i = 70 + 0.2 X_i$$

2

A complication

• Imagine that we collected more data for a second classroom and found this:

$$\widehat{Y}_i = 60 + 0.2X_i$$

• Different intercept (maybe the class has a different overall level of ability)

What should we do?

• Three options, from least to most complex:

- 1) Combine the data across classes and ignore that they come from different classes
- 2) Acknowledge that the data come from different classes and include classrooms as a part of our regression model
- 3) Multilevel modeling

4

Option 1

- Collapsing across classes
- This gives us:

 $\hat{Y}_i = 65 + 0.2X_i$

5

Option 2

- Modeling the classroom, too
- Using a dummy-code (classroom 1 = 0)
- This gives us

$$\hat{Y}_i = \beta_0 + \beta_1 X_{pretest,i} + \beta_2 X_{class i}$$
$$\hat{Y}_i = 70 + 0.2 X_{pretest,i} + (-10) X_{class,i}$$

Option 3

- Modeling not only the effect of the pretest at the subject level
- Also modeling the differences in classrooms

$$\begin{split} \hat{Y}_i &= \hat{\beta}_{0,j} + \beta_1 X_{pretest,i} + e_i \\ \hat{\beta}_{0,j} &= \gamma_0 + u_j \end{split}$$

7

Option 3

- Modeling not only the effect of the pretest at the subject level
- Also modeling the differences in classrooms

$$\hat{Y}_i = \hat{\beta}_{0,j} + \beta_1 X_{pretest,i} + \hat{\beta}_{0,j} = \gamma_0 + u_j$$

 e_i

• This is called a random-intercept model, and can be presented as one equation

$$\hat{Y}_i = [\gamma_0 + \beta_1 X_{pretest,i}] + [u_j + e_i]$$

8

What's up with the names?

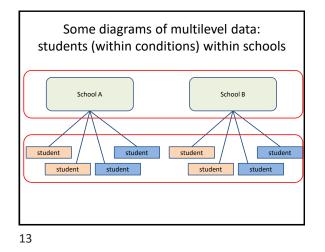
- You'll hear many names for the same (or similar analyses)
 - linear mixed effects models; mixed linear models; linear mixed models
 - hierarchical linear modeling (HLM)
 - general linear mixed model
 - mixed models
 - nested growth curves
 - random effects modeling
 - random coefficient modeling
 - covariance components models

What's "mixed" about these models?

- They include a mix of fixed-effects and random-effects variables
- Fixed-effects variables
 - non-randomly selected
 - no desire to generalize to other levels
 - repeatable
 - get slope estimates
- Random-effects variables
 - randomly selected
 - wish to generalize to other levels
 - not repeatable
 - get variance estimates

10

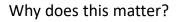
What is multilevel data?

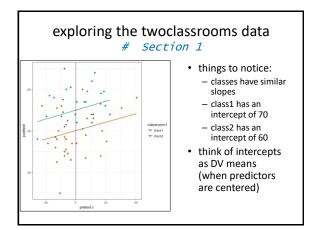

- Data that are somehow grouped in a way that leads to non-independent observations
 - That is, residuals at a/some low level(s) are correlated
- Some examples:
 - in educational research, students are nested within classrooms (& schools, districts, etc.)
 - in political science, legislators are nested within parties (& states, houses of Congress)
 - in public-health policy research, respondents are nested within cities, counties, etc.

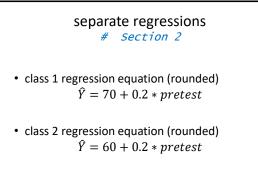
11

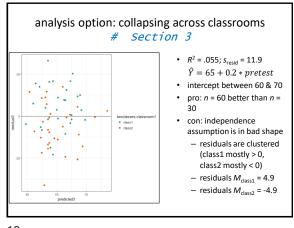
What is multilevel data?

• More examples:

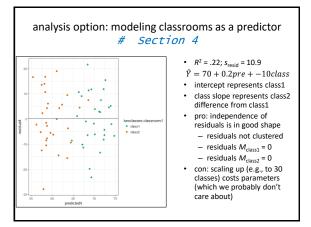

- A clinical psychology student here did a dissertation examining the client-therapist alliance, and got data from many clients who shared therapists
- In repeated-measures designs, multiple observations are made from the same person
- In dyad-based research, the two subjects in the dyad provide related observations

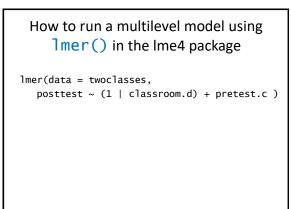

Some diagrams of multilevel data: observations (within conditions) within subjects

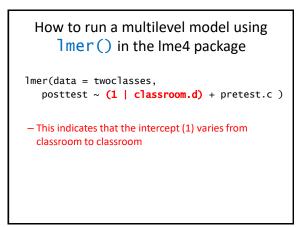

14



- regression (ANOVA is regression) assumes that residuals (unexplained influences on scores) are independent
- if they aren't, this can inflate the Type 1 or Type 2 error rate
- theoretically, ignoring the ways in which data are grouped ignores that context (however it's defined) matters
- practically, some of the higher-level grouping variables may be of interest themselves
- ecological fallacy (high-level relationships may mis-estimate low-level relationships)
- atomistic fallacy (low-level relationships may not scale up)

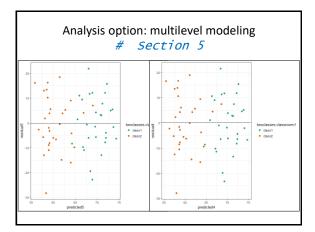

yet more introduction to MLM





How to run a multilevel model using lmer() in the lme4 package
lmer(data = twoclasses,
 posttest ~ (1 | classroom.d) + pretest.c)

22



23

How to run a multilevel model using lmer() in the lme4 package

```
lmer(data = twoclasses,
    posttest ~ (1 | classroom.d) + pretest.c )
```

Parsing	•	the <mark>su</mark> ner()	mmary() call) of
Random effec Groups classroom.d	Name	t) 44.72		
Residual Number of ob	os: 60, grou		10.887 sroom.d, 2	
Number of ob		ups: clas	sroom.d, 2	
Number of ob	:s: Estimate Si	ups: clas td. Error	t value	

