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intro to multilevel modeling

April 17, 2024

What is this about?

• Imagine we are interested in the extent to 
which a pre-test (X; mean-centered!) predicts 
standardized math test scores (Y) in 5th 
graders.

• We collect data from one classroom and find:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖
𝑌𝑖 = 70 + 0.2𝑋𝑖

A complication

• Imagine that we collected more data for a 
second classroom and found this:

𝑌𝑖 = 60 + 0.2𝑋𝑖

• Different intercept (maybe the class has a 
different overall level of ability)
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What should we do?

• Three options, from least to most complex:

1) Combine the data across classes and ignore that 
they come from different classes

2) Acknowledge that the data come from different 
classes and include classrooms as a part of our 
regression model

3) Multilevel modeling

Option 1

• Collapsing across classes

• This gives us:

𝑌𝑖 = 65 + 0.2𝑋𝑖

Option 2

• Modeling the classroom, too

• Using a dummy-code (classroom 1 = 0)

• This gives us

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑝𝑟𝑒𝑡𝑒𝑠𝑡,𝑖 + 𝛽2𝑋𝑐𝑙𝑎𝑠𝑠 𝑖

𝑌𝑖 = 70 + 0.2𝑋𝑝𝑟𝑒𝑡𝑒𝑠𝑡,𝑖 + (−10)𝑋𝑐𝑙𝑎𝑠𝑠,𝑖
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Option 3

• Modeling not only the effect of the pretest at 
the subject level

• Also modeling the differences in classrooms 

𝑌𝑖 = መ𝛽0,𝑗 + 𝛽1𝑋𝑝𝑟𝑒𝑡𝑒𝑠𝑡,𝑖 + 𝑒𝑖

መ𝛽0,𝑗 = 𝛾0 + 𝑢𝑗

Option 3

• Modeling not only the effect of the pretest at the subject 
level

• Also modeling the differences in classrooms 

𝑌𝑖 = መ𝛽0,𝑗 + 𝛽1𝑋𝑝𝑟𝑒𝑡𝑒𝑠𝑡,𝑖 + 𝑒𝑖

መ𝛽0,𝑗 = 𝛾0 + 𝑢𝑗

• This is called a random-intercept model, and can be 
presented as one equation

𝑌𝑖 = [𝛾0 + 𝛽1𝑋𝑝𝑟𝑒𝑡𝑒𝑠𝑡,𝑖] + [𝑢𝑗 + 𝑒𝑖]

What’s up with the names?

• You’ll hear many names for the same (or similar 
analyses)
– linear mixed effects models; mixed linear models; 

linear mixed models
– hierarchical linear modeling (HLM)
– general linear mixed model
– mixed models
– nested growth curves
– random effects modeling
– random coefficient modeling
– covariance components models
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What’s “mixed” about these models?

• They include a mix of fixed-effects and random-effects 
variables

• Fixed-effects variables
– non-randomly selected
– no desire to generalize to other levels
– repeatable
– get slope estimates

• Random-effects variables
– randomly selected
– wish to generalize to other levels
– not repeatable
– get variance estimates

What is multilevel data?

• Data that are somehow grouped in a way that 
leads to non-independent observations
– That is, residuals at a/some low level(s) are correlated

• Some examples:
– in educational research, students are nested within 

classrooms (& schools, districts, etc.)

– in political science, legislators are nested within 
parties (& states, houses of Congress)

– in public-health policy research, respondents are 
nested within cities, counties, etc.

What is multilevel data?

• More examples:

– A clinical psychology student here did a 
dissertation examining the client-therapist 
alliance, and got data from many clients who 
shared therapists

– In repeated-measures designs, multiple 
observations are made from the same person

– In dyad-based research, the two subjects in the 
dyad provide related observations
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Some diagrams of multilevel data:
students (within conditions) within schools

student student

studentstudent

School B

student student

studentstudent

School A

Some diagrams of multilevel data:
observations (within conditions) within subjects

condition 1 condition 2

condition 2condition 1

Subject B

condition 1 condition 2

condition 2condition1

Subject A

Why does this matter?

• regression (ANOVA is regression) assumes that residuals 
(unexplained influences on scores) are independent

• if they aren’t, this can inflate the Type 1 or Type 2 error rate
• theoretically, ignoring the ways in which data are grouped 

ignores that context (however it’s defined) matters
• practically, some of the higher-level grouping variables may 

be of interest themselves
• ecological fallacy (high-level relationships may mis-estimate 

low-level relationships)
• atomistic fallacy (low-level relationships may not scale up)
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yet more introduction to MLM

exploring the twoclassrooms data
#  Section 1

• things to notice:
– classes have similar 

slopes

– class1 has an 
intercept of 70

– class2 has an 
intercept of 60

• think of intercepts 
as DV means 
(when predictors 
are centered)

separate regressions
#  Section 2

• class 1 regression equation (rounded)
𝑌 = 70 + 0.2 ∗ 𝑝𝑟𝑒𝑡𝑒𝑠𝑡

• class 2 regression equation (rounded)
𝑌 = 60 + 0.2 ∗ 𝑝𝑟𝑒𝑡𝑒𝑠𝑡
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analysis option: collapsing across classrooms
#  Section 3

• R2 = .055; sresid = 11.9

𝑌 = 65 + 0.2 ∗ 𝑝𝑟𝑒𝑡𝑒𝑠𝑡 

• intercept between 60 & 70

• pro: n = 60 better than n = 
30

• con: independence 
assumption is in bad shape

– residuals are clustered 
(class1 mostly > 0, 
class2 mostly < 0)

– residuals Mclass1 = 4.9

– residuals Mclass2 = -4.9

analysis option: modeling classrooms as a predictor
#  Section 4

• R2 = .22; sresid = 10.9
𝑌 = 70 + 0.2𝑝𝑟𝑒 + −10𝑐𝑙𝑎𝑠𝑠 

• intercept represents class1

• class slope represents class2 
difference from class1

• pro: independence of 
residuals is in good shape

– residuals not clustered

– residuals Mclass1 = 0

– residuals Mclass2 = 0

• con: scaling up (e.g., to 30 
classes) costs parameters 
(which we probably don’t 
care about)

How to run a multilevel model using 
lmer() in the lme4 package

  lmer(data = twoclasses, 

 posttest ~ (1 | classroom.d) + pretest.c )
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How to run a multilevel model using 
lmer() in the lme4 package

  lmer(data = twoclasses, 

 posttest ~ (1 | classroom.d) + pretest.c )

How to run a multilevel model using 
lmer() in the lme4 package

  lmer(data = twoclasses, 

 posttest ~ (1 | classroom.d) + pretest.c )

– This indicates that the intercept (1) varies from 
classroom to classroom

How to run a multilevel model using 
lmer() in the lme4 package

  lmer(data = twoclasses, 

 posttest ~ (1 | classroom.d) + pretest.c )
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Parsing part of the summary() of
an lmer() call

Random effects:

 Groups      Name        Variance Std.Dev.

 classroom.d (Intercept)  44.72    6.688  

 Residual                118.52   10.887  

Number of obs: 60, groups:  classroom.d, 2

Fixed effects:

            Estimate Std. Error t value

(Intercept)  65.0333     4.9333  13.182

pretest.c     0.2089     0.1036   2.017

Analysis option: multilevel modeling
#  Section 5

• R2 = complicated; sresid = 10.9

𝑌 = 65 + 0.2𝑝𝑟𝑒 

var(classroom) = 44.7

• intercept represents grand 
mean

• variance represents 
classroom mean (intercept) 
differences

• residuals nearly identical to 
using classroom as a 
predictor

• pro: scaling up (e.g., to 30 
classes) costs no parameters
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