logistic regression

a gentle introduction

April 24, 2024

1

why is logistic regression needed?

- with a categorical outcome, a regular linear model will fail in several ways
- (we'll focus here on binary outcomes)
- assumptions of normality and homoscedacity will typically be violated
- the linear model will make nonsensical predictions
- the relationship between predictors and the outcome will quite likely be nonlinear

2

some (real? fake?) data

- diagnosis of breast cancer tumors as malignant or benign
- outcome: malignant, benign (really it's probability of being malignant or benign)
- predictor: mean radius of tumor

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4
linear model assumptions: normality

5
linear model assumptions: homoscedasticity

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7

8

a little more about nonlinearity

- imagine we want to predict whether someone will buy a house based on household income
- the predicted change in the outcome is not constant per unit increase in the predictor; that is, it depends on the value of the predictor

income	$p($ buy $)$
$\$ 40 \mathrm{~K}$	
$\$ 50 \mathrm{~K}$	
$\$ 60 \mathrm{~K}$	
$\$ 70 \mathrm{~K}$	
$\$ 80 \mathrm{~K}$	
$\$ 90 \mathrm{~K}$	
\ldots	
$\$ 340 \mathrm{~K}$	
$\$ 350 \mathrm{~K}$	
$\$ 360 \mathrm{~K}$	
$\$ 370 \mathrm{~K}$	

so what will we do?

- we'll transform the outcome from probability first to odds, and then we'll take the logarithm of the odds
- we'll take this in two steps to talk about why

10

odds

- odds are the ratio of the probability of an event happening to it not happening
- that is

$$
o d d s=\frac{p(A)}{p(\sim A)}=\frac{p(A)}{1-p(A)}
$$

11

some examples

- if $p=.5$, odds $=.5 / .5=1$
- if $p=.25$, odds $=.25 / .75=.333$
- if $p=.75$, odds $=.75 / .25=3$
- $\mathrm{p}>.5 \rightarrow$ odds >1
- $\mathrm{p}<.5 \rightarrow$ odds <1
odds have no upper bound,
but they do have a lower bound
- $\mathrm{p}=.99 \rightarrow$ odds $=.99 / .01=99$
- $\mathrm{p}=.999 \rightarrow$ odds $=.999 / .001=999$
- $p=.01 \rightarrow$ odds $=.01 / .99=.0101 \ldots$
- $p=.001 \rightarrow$ odds $=.001 / .999=.001001 \ldots$

14

logarithms

- the logarithm of a number is the power to which some "base" must be raised to equal the number
- for example, the base 10 logarithm of 100 is 2 because

$$
10^{x}=100 \rightarrow x=2
$$

- this would be written as $\log _{10}(100)=2$

natural logarithms

- natural logarithms (typically denoted $I n$) are logarithms with e as a base

$$
e \approx 2.718
$$

- if we take the natural logarithm of odds, some useful things occur

16

17

the logit function

- the logit function converts probabilities to logits by taking their odds and finding the natural log

$$
\text { logit } p=\ln \frac{p}{1-p}
$$

- if we convert our outcome to logits and fit a regular linear model, we are doing logistic regression

19

the model and its summary

```
g7m(Y ~ radius_mean.c, d, family = "binomial")
Coefficients:
Estimate Std. Error z value \(\operatorname{Pr}(>|z|)\)
\begin{tabular}{lrrrr} 
(Intercept) & -0.64406 & 0.13998 & -4.601 & \(4.2 \mathrm{e}-06 * * *\) \\
radius_mean.c & 1.03359 & 0.09311 & 11.101 & \(<2 \mathrm{e}-16 * * *\)
\end{tabular}
```

- these parameter estimates are interpretable as usual
- however, they are in logits, which are not very intuitive \qquad
\qquad
20

improving interpretability by exponentiation

- if we exponentiate (i.e., undo the logarithms) the parameter estimates, we can interpret them as odds

$$
\exp (\operatorname{coef}(m))
$$

\qquad
(Intercept) radius_mean.c $0.525156 \quad 2.811136$ \qquad
\qquad

- the intercept is the predicted odds of a tumor being malignant at the mean of radius_mean
\qquad increase in the radius_mean
- this latter value is not additive! it's multiplicative!
multiplicative interpretation
- if the odds of a tumor being malignant at the mean of the predictor are predicted to be 0.525
- at one unit higher (than the mean), the odds are predicted to be
$0.525 \times 2.81=1.48$
- at another unit higher, the odds are predicted to be $1.48 \times 2.81=4.15$
- at one unit lower than the mean, the odds are predicted to be

$$
0.524 / 2.81=0.187
$$

22
interpreting (predicted) odds

- odds $=0.525 \rightarrow 0.525$ less likely to be malignant than benign
- odds $=1.48 \rightarrow 1.48 \times$ more likely to be malignant than benign

23

