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logistic regression
a gentle introduction

April 24, 2024

why is logistic regression needed?

• with a categorical outcome, a regular linear 
model will fail in several ways

• (we’ll focus here on binary outcomes)

• assumptions of normality and homoscedacity 
will typically be violated

• the linear model will make nonsensical 
predictions

• the relationship between predictors and the 
outcome will quite likely be nonlinear

some (real? fake?) data

• diagnosis of breast cancer tumors as malignant 
or benign

• outcome: malignant, benign (really it’s 
probability of being malignant or benign)

• predictor: mean radius of tumor
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linear model assumptions:
normality

linear model assumptions:
homoscedasticity
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nonsensical predictions

nonlinearity

a little more about nonlinearity

• imagine we want to 
predict whether 
someone will buy a 
house based on 
household income

• the predicted change 
in the outcome is not 
constant per unit 
increase in the 
predictor; that is, it 
depends on the value 
of the predictor

income p(buy)
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so what will we do?

• we’ll transform the outcome from probability 
first to odds, and then we’ll take the logarithm of 
the odds

• we’ll take this in two steps to talk about why

odds

• odds are the ratio of the probability of an event 
happening to it not happening

• that is

𝑜𝑑𝑑𝑠 =
𝑝(𝐴)

𝑝(~𝐴)
=

𝑝(𝐴)

1 − 𝑝(𝐴)

some examples

• if p = .5, odds = .5 / .5 = 1

• if p = .25, odds = .25 / .75 = .333

• if p = .75, odds = .75 / .25 = 3

• p > .5 → odds > 1
• p < .5 → odds < 1
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odds have no upper bound,
but they do have a lower bound

• p = .99 → odds = .99 / .01 = 99
• p = .999 → odds = .999 / .001 = 999

• p = .01 → odds = .01 / .99 = .0101...
• p = .001 → odds = .001 / .999 = .001001...

logarithms

• the logarithm of a number is the power to which 
some “base” must be raised to equal the number

• for example, the base 10 logarithm of 100 is 2 
because

10X = 100 → X = 2

• this would be written as log10(100) = 2
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natural logarithms

• natural logarithms (typically denoted ln) are 
logarithms with e as a base

e ≈ 2.718

• if we take the natural logarithm of odds, some 
useful things occur

log(odds)

• there is no lower or upper bound

• p = .5 → log(odds) = 0
• p > .5 → log(odds) > 0
• p < .5 → log(odds) < 0

• and they’re symmetric

log(odds)
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the logit function

• the logit function converts probabilities to logits 
by taking their odds and finding the natural log

𝑙𝑜𝑔𝑖𝑡 𝑝 = ln
𝑝

1 − 𝑝

• if we convert our outcome to logits and fit a 
regular linear model, we are doing logistic 
regression

the model and its summary

glm(Y ~ radius_mean.c, d, family = “binomial”)

Coefficients:

              Estimate Std. Error z value Pr(>|z|)    

(Intercept)   -0.64406    0.13998  -4.601  4.2e-06 ***

radius_mean.c  1.03359    0.09311  11.101  < 2e-16 ***

• these parameter estimates are interpretable as usual
• however, they are in logits, which are not very intuitive

improving interpretability by 
exponentiation
• if we exponentiate (i.e., undo the logarithms) the 

parameter estimates, we can interpret them as odds

exp(coef(m))

(Intercept) radius_mean.c 

   0.525156      2.811136 

• the intercept is the predicted odds of a tumor being 
malignant at the mean of radius_mean

• the slope is the increase in odds for every one unit 
increase in the radius_mean

• this latter value is not additive! it’s multiplicative!
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multiplicative interpretation
• if the odds of a tumor being malignant at the mean of 

the predictor are predicted to be 0.525

• at one unit higher (than the mean), the odds are 
predicted to be

0.525 × 2.81 = 1.48

• at another unit higher, the odds are predicted to be
1.48 × 2.81 = 4.15

• at one unit lower than the mean, the odds are 
predicted to be

0.524 / 2.81 = 0.187

interpreting (predicted) odds

• odds = 0.525 → 0.525 less likely to be malignant 
than benign

• odds = 1.48 → 1.48x more likely to be malignant 
than benign

predicted odds, graphed

22

23

24


	Slide 1: logistic regression
	Slide 2: why is logistic regression needed?
	Slide 3: some (real? fake?) data
	Slide 4
	Slide 5: linear model assumptions: normality
	Slide 6: linear model assumptions: homoscedasticity
	Slide 7: nonsensical predictions
	Slide 8: nonlinearity
	Slide 9: a little more about nonlinearity
	Slide 10: so what will we do?
	Slide 11: odds
	Slide 12: some examples
	Slide 13: odds have no upper bound, but they do have a lower bound
	Slide 14
	Slide 15: logarithms
	Slide 16: natural logarithms
	Slide 17: log(odds)
	Slide 18: log(odds)
	Slide 19: the logit function
	Slide 20: the model and its summary
	Slide 21: improving interpretability by exponentiation
	Slide 22: multiplicative interpretation
	Slide 23: interpreting (predicted) odds
	Slide 24: predicted odds, graphed

