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categorical predictors
(part 5: “post-tests”)

February 12, 2024

review

• both contrast codes and dummy codes provide 
ways to compare groups using single-df contrasts

• why single df? because each comparison is about a 
single parameter

• some (most?) software defaults to dummy-coding

• whatever codes you use, F for the whole model (all 
of the predictors combined) will be the same

“model F” is the same regardless 
of coding

D1 D2

I 1 0

R 0 1

C 0 0

strange1 strange2

I 2 3

R 7 11

C 1 4

F(2, 27) = 6.3 F(2, 27) = 6.3

Why?
Whatever values are assigned to groups, model F is based on

Model A: 𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2

Model C: 𝑌 = 𝑏0 + 0 𝑋1 + 0 𝑋2
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pairwise comparisons

• very often the contrasts of interest in a one-factor 
study are simply comparisons between all possible 
pairs of groups

• this is clunky to execute using orthogonal contrasts (or 
dummy coding)

• it requires redoing analyses multiple times (and in 
some cases generating irrelevant contrasts)

• the pairwise.t.test function is handy for executing 
only pairwise comparisons

• it comes with an argument that allows one to control 
Type I errors ...

controlling Type I error rates

• if each hypothesis test one does comes with a .05 
error rate ...

• ... doing many hypothesis tests leads to a 
familywise error rate of > .05

• FWER = the probability of at least one Type I error 
in a family of contrasts

• important digression: what is a family?
• is it all the hypothesis tests you do in your career?

• is it all the hypothesis tests you do in one manuscript?

• is it all the hypothesis tests you do for one model?

controlling Type I error rates

• use the Bonferroni (or Dunn-Bonferroni) procedure if 
your contrasts are planned

• if c = the number of contrasts you’ll perform

• use an alpha level of .05/c to decide significance

• e.g., if you’re doing 5 contrasts

𝛼 = ൗ.05
5 = .01

• alternatively, take each p and multiply it by c, and then 
compare to α (probably .05)
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controlling the “false discovery 
rate”

• the Bonferroni procedure is designed to minimize 
the probability of at least one Type I error occurring

• other procedures are designed to minimize the 
proportion of Type I errors that occur (the “false 
discovery rate”)

• a simple one is the Benjamini-Hochberg procedure

BH procedure

• for any family of contrasts
• find p-values for contrasts

• rank the p-values from p1 to pK (small to large)
• if pK < FWER, all are significant

• if not, check if pK – 1 < FWER / 2; all remaining significant

• if not, check if pK – 2 < FWER / 3; etc.

controlling Type I error rates

• for unplanned (post-hoc, data-snooping) contrasts, 
use Scheffe’s procedure

• it’s the method of last resort

7

8

9



2/12/2024

4

writing about results

Three pairwise comparisons were executed by 
orthogonal contrasts. To control the Type I error rate, 
a Bonferroni-corrected α = .05/3 = .017 was used. 
The imagery group (M = 12) had significantly better 
memory than the control group (M = 6), t(27) = 3.48, 
p = .001. The rhyme group (M = 10) had non-
significantly better memory than the control group 
(M = 6), t(27) = 2.32, p = .03. The imagery and rhyme 
groups also did not differ significantly, t(27) = 1.16, p
= .26.

or ...

Three pairwise comparisons were executed by 
orthogonal contrasts. To control the Type I error rate, 
Bonferroni-corrected p-values were used with α = 
.05. The imagery group (M = 12) had significantly 
better memory than the control group (M = 6), t(27) 
= 3.48, p = .005. The rhyme group (M = 10) had non-
significantly better memory than the control group 
(M = 6), t(27) = 2.32, p = .085. The imagery and 
rhyme groups also did not differ significantly, t(27) = 
1.16, p = .77.

a little theory

(time permitting)
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reminders about SSE and SSR
• in a design with three groups, Model A is

𝑌ij = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀ij

• we can express predicted scores as follows

𝑌ij = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 or   𝑌ij = ത𝑌.j

• and we can express (estimates of) residuals

𝑒ij = 𝑌ij − ത𝑌.j

• and SSE(A) is

𝑆𝑆𝐸(𝐴) = (𝑌ij − ത𝑌.j)
2

reminders about SSE and SSR
• in a design with three groups, Model C (for the usual ANOVA) is

𝑌ij = 𝛽0 + 0𝑋1 + 0𝑋2 + 𝜀ij

• we can express predicted scores as follows

𝑌ij = 𝑏0 or   𝑌ij = ത𝑌..

• and we can express (estimates of) residuals

𝑒ij = 𝑌ij − ത𝑌..

• and SSE(C) thus is

𝑆𝑆𝐸(𝐶) =  𝑌ij − ത𝑌..
2

reminders about SSE and SSR
• if we compare Model A to Model C, we get SSR

𝑆𝑆𝑅 = 𝑆𝑆𝐸 𝐶 − 𝑆𝑆𝐸(𝐴)

• SSR is the reduction (improvement) in SSE

• it can be re-expressed as follows

𝑆𝑆𝑅 =  𝑛j( ത𝑌.j − ത𝑌..)
2

• or (less formally, but more clearly, I hope)

𝑆𝑆𝑅 =  𝑛group(ത𝑌group − ത𝑌overall)
2
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these SS values have aliases  in 
the context of ANOVA

𝑆𝑆𝑅 = 𝑆𝑆between
𝑆𝑆𝐸 𝐴 = 𝑆𝑆within

𝑆𝑆𝐸 𝐶 = 𝑆𝑆total

• SSbetween is a measure of differences between 
groups, with sample size playing a role

• Why do group means differ?
• real differences + noise

• SSwithin is a measure of differences within groups

• Why do scores within groups differ?
• noise

now MSs

• the df associated with SSs can be used to calculate 
MS values, as follows

𝑀𝑆between = ൗ𝑆𝑆between
𝑘 − 1

𝑀𝑆within = ൗ𝑆𝑆within
𝑛 − 𝑘

finally the F-ratio

𝐹 =
𝑀𝑆between

𝑀𝑆within
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what contributes to the F-ratio?

formally

𝐹 =
𝐸(𝑀𝑆between)

𝐸(𝑀𝑆within)
=

𝜎e
2 + 𝑛𝜃groups

2

𝜎e
2

what?!

𝜇1 𝜇2 𝜇3

𝜃groups
2  is the variance

of µ1, µ2, and µ3

what contributes to the F-ratio?

formally

𝐹 =
𝐸(𝑀𝑆between)

𝐸(𝑀𝑆within)
=

𝜎e
2 + 𝑛𝜃groups

2

𝜎e
2

informally!

𝐹 =
noise + sample size × group diffs

noise + sample size × group diffs
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why does this matter?

𝐹 =
noise + sample size × group diffs

noise + sample size × group diffs

• if noise is minimized, power goes up

• if sample size is increased, power goes up

• if groups are more different, power goes up

• this also is how an F-ratio is constructed: if there are no 
group diffs (it’s 0), the numerator and denominator are 
both noise and F is expected to equal 1
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