things to know

- PS 3 grading is done
- PS 4's answer key is still in the works
- PS 5 will be assigned this evening and due on Monday
- Drill is on for tomorrow
- There is a script available for today
- April 8 will be skipped
- there is way more in the slides than I can cover today

1

a note about emmeans

- this is a widely-used package in R for the kinds of designs we've been talking about
- it has the following amusing note, early in its FAQ

2

3

review

- a factorial design with two factors has
- main effects (the effect of one factor ignoring the other)
- an interaction effect (whether the effect of one factor depends on the value of the other)
- we can analyze a 2×2 design with
- ANOVA
- (when we move to bigger designs, ANOVA will leave us wanting)
- contrast codes for the main effects
- dummy codes for the simple effects/slopes

4
reminder of the design, results

PB

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5

linear model results
(dummy codes vs contrast codes)

Dummy	Estimate	SE	t	Pr ($>\mathrm{F}$)	
(Intercept)	2.1000	0.6071	3.459	0.00141	**
meatD	3.9000	0.8586	4.542	6.03e-05	***
PBD	4.8000	0.8586	5.590	$2.45 \mathrm{e}-06$	***
meatD: PBD	-9.7000	1.2143	-7.988	$1.74 \mathrm{e}-09$	*
Contrast	Estimate	SE	t	$\operatorname{Pr}(>\mathrm{F})$	
(Intercept)	4.0250	0.3036	13.259	2.02e-15	***
meatc	-0.9500	0.6071	-1.565	0.126	
PBC	-0.0500	0.6071	-0.082	0.935	
int	-9.7000	1.2143	-7.988	$1.74 \mathrm{e}-09$	

7

reference-reference mean

summary (1 m (tastiness \sim meatD*PBD, d), $\mathrm{t}=\mathrm{F}$)
some

none	meat
$M=2.1$	$M=6.0$
$M=6.9$	$M=1.1$

\qquad

8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10

11
practical advice

- which should we use?
- it depends on what you want to know!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
T.
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-2.

$$
\square
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
what do we want to know?

- if simple slopes/effects, use carefully-chosen dummy codes

13
what do we want to know?

- if main effects, use carefully chosen contrast codes (or the usual ANOVA)

14
what do we want to know?

PB

meat	
none	
$M=2.1, \mathrm{~s}^{2}=3.2$	
$M=6.9, \mathrm{~s}^{2}=4.8$	
$M=6.0, \mathrm{~s}^{2}=4.2$	
$M=4.5$	

$M=4.05$ $M=4.0$

- if the interaction, it doesn't matter much

what is an interaction?

- when the effect of one variable changes across values of another variable
- here, the effect of PB is to increase tastiness when there is no meat
- but the effect of PB is to reduce tastiness when there is meat

16
notice that the interaction is really
a contrast between simple slopes

- this simple slope is $6.9-2.1=+4.8$
- this simple slope is $1.1-6.0=-4.9$
- the contrast between the simple slopes is $4.8-(-4.9)=-9.7$

17

another way to think about this design

- we have a four-group design, which can be depicted as follows

no PB no meat	no PB some meat	some PB no meat	some PB some meat
2.1	6.9	6.0	1.1

another way to think about this design

- we could analyze this design using the method of subsets

no $P B$ no meat	no PB some meat	some PB no meat	some PB some meat
2.1	6.9	6.0	1.1
$3 / 4$	$-1 / 4$	$-1 / 4$	$-1 / 4$
0	$1 / 3$	$1 / 3$	$-2 / 3$
0	$1 / 2$	$-1 / 2$	0

19

another way to think about this design

- this would answer some interesting questions, but would not test the interaction (nor any main effects)

no PB no meat	no PB some meat	some PB no meat	some PB some meat
2.1	6.9	6.0	1.1
$3 / 4$	$-1 / 4$	$-1 / 4$	$-1 / 4$
0	$1 / 3$	$1 / 3$	$-2 / 3$
0	$1 / 2$	$-1 / 2$	0

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

another way to think about this design

- contrast codes result in a different set of contrasts

no PB no meat	no PB some meat	some PB no meat	some PB some meat
2.1	6.9	6.0	1.1
$-1 / 2$	$-1 / 2$	$+1 / 2$	$+1 / 2$
$-1 / 2$	$+1 / 2$	$-1 / 2$	$+1 / 2$
$+1 / 4$	$-1 / 4$	$-1 / 4$	$+1 / 4$

interim summary

- despite the factorial nature of this design, it's just a four-group design
- any three orthogonal contrasts can be used to analyze it
- but if we are interested in specific questions including the interaction - we need to carefully choose our contrasts
- contrast or dummy coding main effects (and creating a product term) will allow us to answer the questions of interest

22
larger two-factor designs

- Factor A: sentence (normal/intact vs scrambled)
- Factor B: presentation rate (300, 450, 600 wpm)
- $D V=\%$ correct detection of a word
- this is a 2 (sentence) $\times 3$ (rate) design
- there are six groups
- ultimately, no matter how we create them, we'll need five contrast codes

23
the results (cell, marginal, overall means)

	300	450	600	
intact	64	60	44	56
scrambled	54	50	46	50
	59	55	45	53

25

- let's generate contrast codes for each factor, ignoring the other factor
- for the sentence factor, there's no decision to be made
- with two levels, we'll use $+1 / 2$ and $-1 / 2$

26
filling in some codes

	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$

how to analyze?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

how to analyze?

- let's generate contrast codes for each factor, ignoring the other factor
- for the rate factor, the researcher thought something interest would happen at the very-high rate relative to the other two
- R1: 300,450 vs 600
- the other contrast is the only one leftover
-R2: $\underline{300}$ vs 450

28
filling in some codes:
multiply to get interactions

	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$
R1	$+1 / 3$	$+1 / 3$	$-2 / 3$	$+1 / 3$	$+1 / 3$	$-2 / 3$
R2	$+1 / 2$	$-1 / 2$	0	$+1 / 2$	$-1 / 2$	0
T*R1	$+1 / 6$	$+1 / 6$	$-2 / 6$	$-1 / 6$	$-1 / 6$	$+2 / 6$
T*R2	$+1 / 4$	$-1 / 4$	0	$-1 / 4$	$+1 / 4$	0

29

What do we get?						
Estimate				SE	t	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)		53		0.99	53.62	< $2 \mathrm{e}-16$
T		6		1.98	3.03	0.00412
R1		12		2.10	5.72	9.95e-07
R2		4		2.42	1.65	0.10600
TR1		12		4.19	2.86	0.00655
TR2		0		4.84	0.00	1.00000
	300		450		600	
intact	64		60		44	56
scrambled	54		50		46	50
	59		55		45	53

