things to know

- PS 4's grading is ongoing
- PS 5 is due now
- Next Monday I will do a review and try to generate a useful in-class set of exercises
- We won't meet next Wednesday
- Exam 1 will be available on March 6, due March 11

1

multi-factor designs: larger designs

February 26, 2024

2

larger two-factor designs

- Factor A: sentence (normal/intact vs scrambled)
- Factor B: presentation rate (300, 450, 600 wpm)
- DV = % correct detection of a word
- this is a 2 (sentence) × 3 (rate) design
- there are six groups
- ultimately, no matter how we create them, we'll need five contrast codes

the results (cell, marginal, overall means)

	300	450	600	
intact	64	60	44	56
scrambled	54	50	46	50
	59	55	45	53

4

how to analyze?

- let's generate contrast codes for each factor, ignoring the other factor
- for the sentence factor, there's no decision to be made
- with two levels, we'll use +1/2 and -1/2

filling in some codes

	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600
Т	+1/2	+1/2	+1/2	-1/2	-1/2	-1/2

7

how to analyze?

- let's generate contrast codes for each factor, ignoring the other factor
- for the rate factor, the researcher thought something interest would happen at the very-high rate relative to the other two
- R1: <u>300, 450</u> vs <u>600</u>
- the other contrast is the only one leftover
- R2: <u>300</u> vs <u>450</u>

8

illing in some codes							
	intact	intact	intact	scr	scr	scr	
	300	450	600	300	450	600	
Т	+1/2	+1/2	+1/2	-1/2	-1/2	-1/2	
R1	1/3	1/3	-2/3	1/3	1/3	-2/3	

filling in some codes intact intact intact scr scr scr 300 450 600 300 450 600 -1/2 т +1/2 +1/2 +1/2 -1/2 -1/2 R1 +1/3 +1/3 -2/3 +1/3 +1/3 -2/3 +1/2 +1/2 R2 -1/2 0 -1/2 0

10

illing in some codes: multiply to get interactions							
	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600	
Т	+1/2	+1/2	+1/2	-1/2	-1/2	-1/2	
R1	+1/3	+1/3	-2/3	+1/3	+1/3	-2/3	
R2	+1/2	-1/2	0	+1/2	-1/2	0	
T*R1							

11

filling in some codes: multiply to get interactions

	intact	intact	intact	scr	scr	scr
	300	450	600	300	450	600
Т	+1/2	+1/2	+1/2	-1/2	-1/2	-1/2
R1	+1/3	+1/3	-2/3	+1/3	+1/3	-2/3
R2	+1/2	-1/2	0	+1/2	-1/2	0
T*R1	+1/6	+1/6	-2/6	-1/6	-1/6	+2/6
			•			

filling in some codes: multiply to get interactions

	intact	intact	intact	scr	scr	scr
	300	450	600	300	450	600
Т	+1/2	+1/2	+1/2	-1/2	-1/2	-1/2
R1	+1/3	+1/3	-2/3	+1/3	+1/3	-2/3
R2	+1/2	-1/2	0	+1/2	-1/2	0
T*R1	+1/6	+1/6	-2/6	-1/6	-1/6	+2/6
T*R2	+1/4	-1/4	0	-1/4	+1/4	0

13

what do we get?								
	Estimat	e	SI	E t	Pr	'(> t)		
(Intercept)	5	3	0.99	53.62	<	2e-16		
т		6	1.98	3.03	C	.00412		
R1	1	2	2.10	5.72	9.	95e-07		
R2		4	2.42	2 1.65	C	.10600		
TR1	1	2	4.19	2.86	C	.00655		
TR2		0	4.84	4 0.00	1	.00000		
	300	450)	600				
intact	64	60		44		56		
scrambled	54	50		46		50		
	59	55		45		53		

14

a write-up of this model

- Intact text led to significantly higher performance than scrambled text, t(42) = 3.04, p = .004.
- Slower presentation rates (300 & 450 wpm) led to significantly higher performance than 600 wpm, t(42) = 5.72, p < .001, but there was no significant difference between the former two, t(42) = 1.65, p = .11.
- The advantage for the slower presentation rates over 600 wpm was significantly larger for intact than for scrambled text, t(42) = 2.86, p = .007.
- There was no significant difference in the 300 vs 450 wpm contrast between intact and scrambled test, t(42) = 0, p = 1.

the conventional ANOVA results > summary(aov(dv ~ text*wpm, scrambled)) Df Sum Sq Mean Sq F value Pr(>F) text 1 432 432.0 9.210 0.00412 1664 832.0 17.738 2.6e-06 wpm 2 384 192.0 4.093 0.02376 2 text:wpm Residuals 1970 46.9 42 Post-tests for significant main effects with >1 df (main effect contrasts) are common · Post-tests for significant interactions (simple effects tests & interaction contrasts) are common

16

n d	multiply by common denominators to simplify								
		i3	i4	i6	s3	s4	s6		
	Т	+1	+1	+1	-1	-1	-1		
	R1	+1	+1	-2	+1	+1	-2		
	R2	+1	-1	0	+1	-1	0		
	T*R1	+1	+1	-2	-1	-1	+2		
	T*R2	+1	-1	0	-1	+1	0		

17

```
what is Model A/Model C?
for variable R1 (300, 450 vs 600)
• Model A
Y = \beta_0 + \beta_1 T + \beta_2 R1 + \beta_3 R2 + \beta_4 TR1 + \beta_5 TR2
• Model C
Y = \beta_0 + \beta_1 T + 0R1 + \beta_3 R2 + \beta_4 TR1 + \beta_5 TR2
Y = \beta_0 + \beta_1 T \beta_3 R2 + \beta_4 TR1 + \beta_5 TR2
H_0: \beta_2 = 0
```

what is Model A/Model C? for variable TR1 • Model A $Y = \beta_0 + \beta_1 T + \beta_2 R1 + \beta_3 R2 + \beta_4 TR1 + \beta_5 TR2$ • Model C $Y = \beta_0 + \beta_1 T + \beta_2 R1 + \beta_3 R2 + 0TR1 + \beta_5 TR2$ $Y = \beta_0 + \beta_1 T + \beta_2 R1 + \beta_3 R2 + \beta_5 TR2$

19

other versions of Model C

• Model A

 $Y=\beta_0+\beta_1T+\beta_2R1+\beta_3R2+\beta_4TR1+\beta_5TR2$

Model C for the typical ANOVA main effect of text

 $Y = \beta_0 \qquad \qquad + \beta_2 R 1 + \beta_3 R 2 + \beta_4 T R 1 + \beta_5 T R 2$

• PRE gives R^2 for text (often reported as η_p^2)

20

other versions of Model C

• Model A

 $Y=\beta_0+\beta_1T+\beta_2R1+\beta_3R2+\beta_4TR1+\beta_5TR2$

• Model C for the typical ANOVA main effect of rate/wpm

 $Y = \beta_0 + \beta_1 T + \qquad \qquad \beta_4 T R 1 + \beta_5 T R 2$

• PRE gives R^2 for rate (often reported as η_p^2)

other versions of Model C

• Model A

 $Y = \beta_0 + \beta_1 T + \beta_2 R 1 + \beta_3 R 2 + \beta_4 T R 1 + \beta_5 T R 2$

• Model C for the typical ANOVA interaction effect

$$Y = \beta_0 + \beta_1 T + \beta_2 R 1 + \beta_3 R 2$$

• PRE gives R^2 for the interaction (often reported as η_p^2)

22

23

25

dealing with 3+ factors

- for each factor, generate a set of orthogonal contrast codes
- for the two-factor interactions, multiply all pairs of contrasts (across factors, but not within)
- for the three-factor interactions, multiply all triads of contrasts (across factors, but not within)
- etc.
- model as usual
- but be aware that most people can't think very clearly about interactions among three factors (and more than that ... (1)

26

general advice

- the overall ANOVA will usually leave you needing follow-up tests in many cases
- let your substantive questions dictate the analyses you execute
- be aware of the costs and benefits of using orthogonal contrast codes vs other possibilities (e.g., dummy codes)
- use cell means to help you interpret what your slopes are about
- alternatively, you can interpret slopes as we did with continuous predictors; this may be easier with dummy codes than with orthogonal contrasts