things to know

- PS 4's grading is ongoing
- PS 5 is due now
- Next Monday I will do a review and try to generate a useful in-class set of exercises
- We won't meet next Wednesday
- Exam 1 will be available on March 6, due March 11

1

2

larger two-factor designs

- Factor A: sentence (normal/intact vs scrambled)
- Factor B: presentation rate (300, 450, 600 wpm$)$
- DV $=\%$ correct detection of a word
- this is a 2 (sentence) $\times 3$ (rate) design
- there are six groups
- ultimately, no matter how we create them, we'll need five contrast codes

3
the results (cell, marginal, overall means)

	300	450	600	
intact	64	60	44	56
scrambled	54	50	46	50
	59	55	45	53

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5
how to analyze?

- let's generate contrast codes for each factor, ignoring the other factor
- for the sentence factor, there's no decision to be made \qquad
- with two levels, we'll use $+1 / 2$ and $-1 / 2$
filling in some codes

	intact intact 400	intact 600	scr 300	scr 450	scr 600	
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$

7
how to analyze?

- let's generate contrast codes for each factor, ignoring the other factor
- for the rate factor, the researcher thought something interest would happen at the very-high rate relative to the other two
- R1: 300,450 vs 600
- the other contrast is the only one leftover
- R2: $\underline{300}$ vs $\underline{450}$

8
filling in some codes

	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$
R1	$1 / 3$	$1 / 3$	$-2 / 3$	$1 / 3$	$1 / 3$	$-2 / 3$

filling in some codes

	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$
R1	$+1 / 3$	$+1 / 3$	$-2 / 3$	$+1 / 3$	$+1 / 3$	$-2 / 3$
R2	$+1 / 2$	$-1 / 2$	0	$+1 / 2$	$-1 / 2$	0

10
filling in some codes:
multiply to get interactions

	intact intact 300	intact 450 600	scr 300	scr 450	scr 600	
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$
R1	$+1 / 3$	$+1 / 3$	$-2 / 3$	$+1 / 3$	$+1 / 3$	$-2 / 3$
R2	$+1 / 2$	$-1 / 2$	0	$+1 / 2$	$-1 / 2$	0
T*R1						

11
filling in some codes:
multiply to get interactions

	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$
R1	$+1 / 3$	$+1 / 3$	$-2 / 3$	$+1 / 3$	$+1 / 3$	$-2 / 3$
R2	$+1 / 2$	$-1 / 2$	0	$+1 / 2$	$-1 / 2$	0
T*R1	$+1 / 6$	$+1 / 6$	$-2 / 6$	$-1 / 6$	$-1 / 6$	$+2 / 6$

filling in some codes:
 multiply to get interactions

	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$
R 1	$+1 / 3$	$+1 / 3$	$-2 / 3$	$+1 / 3$	$+1 / 3$	$-2 / 3$
R 2	$+1 / 2$	$-1 / 2$	0	$+1 / 2$	$-1 / 2$	0
T*R1	$+1 / 6$	$+1 / 6$	$-2 / 6$	$-1 / 6$	$-1 / 6$	$+2 / 6$
T*R2	$+1 / 4$	$-1 / 4$	0	$-1 / 4$	$+1 / 4$	0

13

14

a write-up of this model

- Intact text led to significantly higher performance than scrambled text, $\mathrm{t}(42)=3.04, \mathrm{p}=.004$.
- Slower presentation rates (300 \& 450 wpm) led to significantly higher performance than $600 \mathrm{wpm}, \mathrm{t}(42)=$ $5.72, \mathrm{p}<.001$, but there was no significant difference between the former two, $\mathrm{t}(42)=1.65, \mathrm{p}=.11$.
- The advantage for the slower presentation rates over 600 wpm was significantly larger for intact than for scrambled text, $\mathrm{t}(42)=2.86, \mathrm{p}=.007$.
- There was no significant difference in the 300 vs 450 wpm contrast between intact and scrambled test, $\mathrm{t}(42)$ $=0, p=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

the conventional ANOVA results

```
> summary(aov(dv ~ text*wpm, scrambled))
    Df Sum Sq Mean Sq F value Pr(>F)
\begin{tabular}{lrrrrr} 
text & 1 & 432 & 432.0 & 9.210 & 0.00412 \\
wpm & 2 & 1664 & 832.0 & 17.738 & \(2.6 \mathrm{e}-06\) \\
text:wpm & 2 & 384 & 192.0 & 4.093 & 0.02376 \\
Residuals & 42 & 1970 & 46.9 & &
\end{tabular}
```

- Post-tests for significant main effects with >1 df (main effect contrasts) are common
- Post-tests for significant interactions (simple effects tests \& interaction contrasts) are common

16
multiply by common denominators to simplify

multiply by common
denominators to simplify

	i3	i4	i6	s3	s4	s6
T	+1	+1	+1	-1	-1	-1
R1	+1	+1	-2	+1	+1	-2
R2	+1	-1	0	+1	-1	0
T*R1	+1	+1	-2	-1	-1	+2
T*R2	+1	-1	0	-1	+1	0

17

- Model A
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$
- Model C

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} T+0 R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2 \\
Y=\beta_{0}+\beta_{1} T \\
\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2 \\
H_{0}: \beta_{2}=0
\end{gathered}
$$

what is Model $A / M o d e l ~ C ?$
 for variable R1 (300, 450 vs 600)

\qquad

what is Model A/Model C? for variable TR1

- Model A

$$
Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2
$$

- Model C
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+0 T R 1+\beta_{5} T R 2$
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\quad \beta_{5} T R 2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19
other versions of Model C
- Model A
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$
- Model C for the typical ANOVA main effect of text
$Y=\beta_{0} \quad+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$
- PRE gives R^{2} for text (often reported as η_{p}^{2})

20

other versions of Model C

- Model A

$$
Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2
$$

- Model C for the typical ANOVA main effect of rate/wpm \qquad
\qquad
\qquad
- PRE gives R^{2} for rate (often reported as η_{p}^{2})

other versions of Model C

- Model A

$$
Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2
$$

- Model C for the typical ANOVA interaction effect \qquad
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2$
- PRE gives R^{2} for the interaction (often reported as η_{p}^{2})

22
other versions of Model C

- Model A
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$ \qquad
\qquad
- Model C for the whole model
$Y=\beta_{0}$
- PRE gives R^{2} for the whole model

23

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

using single-df orthogonal contrasts

25

dealing with $3+$ factors

- for each factor, generate a set of orthogonal contrast codes
- for the two-factor interactions, multiply all pairs of contrasts (across factors, but not within)
- for the three-factor interactions, multiply all triads of contrasts (across factors, but not within)
- etc.
- model as usual
- but be aware that most people can't think very clearly about interactions among three factors (and more than that ... ©)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
26

general advice

- the overall ANOVA will usually leave you needing follow-up tests in many cases
- let your substantive questions dictate the analyses you execute
- be aware of the costs and benefits of using orthogonal contrast codes vs other possibilities (e.g., dummy codes)
- use cell means to help you interpret what your slopes are about
- alternatively, you can interpret slopes as we did with continuous predictors; this may be easier with dummy codes than with orthogonal contrasts

