things

- PS 4's grading is still ongoing (I spent a lot of time making new graphs); I am sorry
- PS 5's answer key is still in the works
- PS 6 this evening \rightarrow Monday
- drill tomorrow
- next Monday we'll meet for a review
- we won't meet next Wednesday
- Exam 1 will be available on March 6, due March 11

1

2
contrast codes for a 2×3 design (previously introduced)

	intact 300	intact 450	intact 600	scr 300	scr 450	scr 600
T	$+1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$
R1	$+1 / 3$	$+1 / 3$	$-2 / 3$	$+1 / 3$	$+1 / 3$	$-2 / 3$
R2	$+1 / 2$	$-1 / 2$	0	$+1 / 2$	$-1 / 2$	0
T*R1	$+1 / 6$	$+1 / 6$	$-2 / 6$	$-1 / 6$	$-1 / 6$	$+2 / 6$
T*R2	$+1 / 4$	$-1 / 4$	0	$-1 / 4$	$+1 / 4$	0

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
different summaries, same design

	Estimate	SE	$\mathrm{t} \operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	53	0.99	53.62	$<2 \mathrm{e}-16$	
T	6	1.98	3.03	0.00412	
R1	12	2.10	5.72	$9.95 \mathrm{e}-07$	
R2	4	2.42	1.65	0.10600	
TR1		12	4.19	2.86	0.00655
TR2	0	4.84	0.00	1.00000	
	Df Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$			
text	1	432	432.0	9.210	0.00412
wpm	2	1664	832.0	17.738	$2.6 \mathrm{e}-06$
text:wpm	2	384	192.0	4.093	0.02376
Residuals	42	1970	46.9		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4

what is Model $A /$ Model C?

for variable R1 (300, 450 vs 600)

- Model A

$$
Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2
$$

\qquad

- Model C

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} T+0 R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2 \\
Y=\beta_{0}+\beta_{1} T \quad \beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2 \\
H_{0}: \beta_{2}=0
\end{gathered}
$$

5
what is Model $A /$ Model C?
for variable TR1

- Model A
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$ \qquad
- Model C
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+0 T R 1+\beta_{5} T R 2$
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\quad \beta_{5} T R 2$

other versions of Model C

- Model A
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$
- Model C for the typical ANOVA main effect of text
$Y=\beta_{0} \quad+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$
- PRE gives R^{2} for text (often reported as η_{p}^{2}) 7

other versions of Model C

- Model A

$$
Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2
$$

- Model C for the typical ANOVA main effect of rate/wpm
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
Y=\beta_{0}+\beta_{1} T+\quad \beta_{4} T R 1+\beta_{5} T R 2
$$

- PRE gives R^{2} for rate (often reported as η_{p}^{2})

8

other versions of Model C

- Model A
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$
- Model C for the typical ANOVA interaction effect \qquad $Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+$
- PRE gives R^{2} for the interaction (often reported as η_{p}^{2})
other versions of Model C
- Model A
$Y=\beta_{0}+\beta_{1} T+\beta_{2} R 1+\beta_{3} R 2+\beta_{4} T R 1+\beta_{5} T R 2$
- Model C for the whole model
$Y=\beta_{0}$
- PRE gives R^{2} for the whole model

10

11
using single-df orthogonal contrasts

3+ factors

13
a design (based on real research)

- to understand factors related to eating behavior
- DV: amount of ice cream eaten
- Factor A: good vs bad ice cream
- Factor B: empty vs full stomach
- Factor C: average vs overweight participants

14
results (g of ice cream eaten)

over average	bad		good	
	empty	full	empty	full
	70	60	240	220
	50	10	150	90

16

17

\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
19

20

in a three-factor design

- main effects are interpretable as usual
- two-factor interactions can be decomposed (probed, explained, etc.) with simple-effects tests
- three-factor interactions can be decomposed via simple-effect and/or simple-interaction tests
- but be aware that most people can't think very clearly about interactions among three factors (and more than that ... ©)
- all of the problems (i.e., the need for post-tests) that arise with >1 df effects apply here, but are potentially more complicated

22

general advice

- the overall ANOVA will usually leave you needing follow-up tests in many cases
- let your substantive questions dictate the analyses you execute
- be aware of the costs and benefits of using orthogonal contrast codes vs other possibilities (e.g., dummy codes)
- use cell means to help you interpret what your slopes are about
- alternatively, you can interpret slopes as we did with continuous predictors; this may be easier with dummy codes than with orthogonal contrasts

