things

- PS 4's grading is still ongoing (I spent a *lot* of time making new graphs); I am sorry
- PS 5's answer key is still in the works
- PS 6 this evening ightarrow Monday
- drill tomorrow
- next Monday we'll meet for a review
- we won't meet next Wednesday
- Exam 1 will be available on March 6, due March 11

1

multi-factor designs: wrapping up

February 28, 2024

2

contrast codes for a 2 x 3 design (previously introduced)

	intact	intact	intact	scr	scr	scr
	300	450	600	300	450	600
Т	+1/2	+1/2	+1/2	-1/2	-1/2	-1/2
R1	+1/3	+1/3	-2/3	+1/3	+1/3	-2/3
R2	+1/2	-1/2	0	+1/2	-1/2	0
T*R1	+1/6	+1/6	-2/6	-1/6	-1/6	+2/6
T*R2	+1/4	-1/4	0	-1/4	+1/4	0

different summaries, same design

	E	stimate	5	5E 1	t Pr(> t
(Intercept)		53	0.9	99 53.62	2 < 2e-2
т		6	1.9	98 3.03	3 0.004
R1		12	2.1	LO 5.72	2 9.95e-0
R2		4	2.4	1.6	5 0.1060
TR1		12	4.1	L9 2.86	5 0.006
TR2		0	4.8	34 0.00	1.000
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
text	1	432	432.0	9.210	0.00412
wpm	2	1664	832.0	17.738	2.6e-06
text:wpm	2	384	192.0	4.093	0.02376
Residuals	42	1970	46.9		

4

what is Model A/Model C? for variable R1 (300, 450 vs 600) • Model A $Y = \beta_0 + \beta_1 T + \beta_2 R1 + \beta_3 R2 + \beta_4 TR1 + \beta_5 TR2$ • Model C $Y = \beta_0 + \beta_1 T + 0R1 + \beta_3 R2 + \beta_4 TR1 + \beta_5 TR2$ $Y = \beta_0 + \beta_1 T \qquad \beta_3 R2 + \beta_4 TR1 + \beta_5 TR2$ $H_0: \beta_2 = 0$

5

what is Model A/Model C? for variable TR1 • Model A

 $Y=\beta_0+\beta_1T+\beta_2R1+\beta_3R2+\beta_4TR1+\beta_5TR2$ • Model C

$$\begin{split} Y &= \beta_0 + \beta_1 T + \beta_2 R 1 + \beta_3 R 2 + 0 T R 1 + \beta_5 T R 2 \\ Y &= \beta_0 + \beta_1 T + \beta_2 R 1 + \beta_3 R 2 + \beta_5 T R 2 \end{split}$$

other versions of Model C

• Model A

 $Y=\beta_0+\beta_1T+\beta_2R1+\beta_3R2+\beta_4TR1+\beta_5TR2$

• Model C for the typical ANOVA main effect of text

$$Y = \beta_0 \qquad \qquad +\beta_2 R 1 + \beta_3 R 2 + \beta_4 T R 1 + \beta_5 T R 2$$

- PRE gives R^2 for text (often reported as $\eta_p^2)$

7

other versions of Model C • Model A $Y = \beta_0 + \beta_1 T + \beta_2 R 1 + \beta_3 R 2 + \beta_4 T R 1 + \beta_5 T R 2$ • Model C for the typical ANOVA main effect of rate/wpm $Y = \beta_0 + \beta_1 T + \beta_4 T R 1 + \beta_5 T R 2$

8

other versions of Model C

• PRE gives R^2 for rate (often reported as η_p^2)

• Model A

 $Y=\beta_0+\beta_1T+\beta_2R1+\beta_3R2+\beta_4TR1+\beta_5TR2$

Model C for the typical ANOVA interaction effect

 $Y = \beta_0 + \beta_1 T + \beta_2 R 1 + \beta_3 R 2 +$

• PRE gives R^2 for the interaction (often reported as η_p^2)

3+ factors

13

a design (based on real research)

- to understand factors related to eating behavior
- DV: amount of ice cream eaten
- Factor A: good vs bad ice cream
- Factor B: empty vs full stomach
- Factor C: average vs overweight participants

in a three-factor design

- main effects are interpretable as usual
- two-factor interactions can be decomposed (probed, explained, etc.) with simple-effects tests
- three-factor interactions can be decomposed via simple-effect and/or simple-interaction tests
- but be aware that most people can't think very clearly about interactions among three factors (and more than that ... (2))
- all of the problems (i.e., the need for post-tests) that arise with >1 *df* effects apply here, but are potentially more complicated

22

general advice

- the overall ANOVA will usually leave you needing follow-up tests in many cases
- let your substantive questions dictate the analyses you execute
- be aware of the costs and benefits of using orthogonal contrast codes vs other possibilities (e.g., dummy codes)
- use cell means to help you interpret what your slopes are about
- alternatively, you can interpret slopes as we did with continuous predictors; this may be easier with dummy codes than with orthogonal contrasts