#### announcements

- Problem Set 2 is due right about now
- Problem Set 2's answer key will be available tomorrow(ish)
- Problem Set 3 will be assigned on Wednesday and due next Monday

1

categorical predictors (part 3: ANOVA)

February 5, 2024

2

### getting ready for >2 groups

- the first lesson to learn: creating one X **won't** suffice
- let's try
- I have a data set with 3 groups, and I assigned values of X = 1, 2, and 3 to them, respectively





## using one X for >2 groups will usually induce nonlinearity

- we will *need* m 1 new variables to numerically code our m groups
- the numbers we choose to indicate group membership will depend on what we want our slopes to tell us (among other constraints)

5

### we need more Xs

- if we have m groups, we need m 1 predictors (Xs), no more, no less
- the predictors could (should?) be contrast codes

 $\sum \lambda_k = 0$ 

• we want contrasts to be orthogonal (independent)

### orthogonality

• defined mathematically (for contrast codes; will not work for dummy codes)

$$\sum \lambda_{1k} \lambda_{2k} = 0$$

what?!

• let's look at some Xs for a three-group design and check for orthogonality

7

| three ( $m = 3$ ) groups $\rightarrow$ two Xs, with |
|-----------------------------------------------------|
| the value of $\lambda$ assigned to each             |

| group | $\lambda_1$ | $\lambda_2$ | $\lambda_1\lambda_2$ |
|-------|-------------|-------------|----------------------|
| Α     | 1           | 0           |                      |
| В     | 0           | 1           |                      |
| С     | -1          | -1          |                      |
|       |             |             |                      |

8

three (m = 3) groups  $\rightarrow$  two Xs, with the value of  $\lambda$  assigned to each

| group | $\lambda_1$ | λ2 | $\lambda_1 \lambda_2$ |
|-------|-------------|----|-----------------------|
| А     | 2           | 0  |                       |
| В     | -1          | 1  |                       |
| С     | -1          | -1 |                       |
|       |             |    |                       |

### how to choose contrast codes?

- initially, let predictions dictate what's of interest
- then, let mathematical constraints fill in the rest, as needed

10

# a concrete example in a (hypothetical) study designed to test different memory strategies, participants were randomly assigned to learn a list of words using one of three strategies: form a mental image; find a rhyme; or just to study the list; after study & a delay, they're given a recall test the data are in today's script; the main results are group M control 6 image 12

| 2 image<br>3 rhyme |  |
|--------------------|--|
|--------------------|--|

10

11

### what predictions might we want to test?

- 1. is using a strategy of any kind better than not using one?
- 2. which strategy works better?
- 3. is imagery better than nothing?
- 4. is rhyming better than nothing?
  - each prediction corresponds to a contrast we could do
    we can only include two (no more, no less), and we'd like them to be orthogonal

### let's test predictions 1 & 2

assign  $\lambda$ s using the "method of subsets"

- count the groups involved (this will be the denominator of the  $\lambda$ s)
- count the number of groups on each "team" (these will be numerators of weights on the other team)
- assign + and to each team, with the + going to the team expected to score higher
- for any "team" with more than one group, repeat

13

| group   | $\lambda_1$ | λ <sub>2</sub> | $\lambda_1 \lambda_2$ |
|---------|-------------|----------------|-----------------------|
| image   |             |                |                       |
| rhyme   |             |                |                       |
| control |             |                |                       |
|         |             |                |                       |

14

| what do we get? |          |            |         |          |  |  |
|-----------------|----------|------------|---------|----------|--|--|
|                 | Estimate | Std. Error | t value | Pr(> t ) |  |  |
| (Intercept)     | 9.3333   | 0.7045     | 13.248  | 2.49e-13 |  |  |
| X1              | 5.0000   | 1.4944     | 3.346   | 0.00242  |  |  |
| x2              | 2.0000   | 1.7256     | 1.159   | 0.25660  |  |  |
|                 |          |            |         |          |  |  |
|                 |          |            |         |          |  |  |
|                 |          |            |         |          |  |  |
|                 |          |            |         |          |  |  |
|                 |          |            |         |          |  |  |
|                 |          |            |         |          |  |  |
|                 |          |            |         |          |  |  |
|                 |          |            |         |          |  |  |



what are the predicted scores?  $memory = b_0 + b_1X_1 + b_2X_2$   $memory_{image} = 9.33 + 5(\frac{1}{3}) + 2(\frac{1}{2})$   $memory_{image} = 12$ 

16

what is Model C? • Model A  $memory = b_0 + b_1X_1 + b_2X_2$ • Model C for X<sub>1</sub>  $memory = b_0 + 0X_1 + b_2X_2$ • Model C for X<sub>2</sub>  $memory = b_0 + b_1X_1 + 0X_2$ 

17

let's focus on 
$$b_1$$
  
 $\mu_0: \beta_1 = 0$   
• this could be rewritten as  
 $\mu_0: \frac{1}{3}\mu_{image} + \frac{1}{3}\mu_{rhyme} + \left(-\frac{2}{3}\right)\mu_{control} = 0$   
 $\mu_0: \frac{1}{3}\mu_{image} + \frac{1}{3}\mu_{rhyme} = \frac{2}{3}\mu_{control}$   
 $\mu_0: \mu_{image} + \mu_{rhyme} = 2\mu_{control}$   
 $\mu_0: \frac{\mu_{image} + \mu_{rhyme}}{2} = \mu_{control}$ 

### a different Model C • Model A $memory = b_0 + b_1X_1 + b_2X_2$ • Model C

 $\widehat{memory} = b_0 + \mathbf{0}X_1 + \mathbf{0}X_2$ 

- this is Model C if one does a typical ANOVA
- crucially,  $\it PA-PC\!>\!1;$  this is undesirable for drawing specific conclusions

19





nonorthogonality → tolerance < 1



what happens if contrasts are not orthogonal?

| group   | $\lambda_1$ | λ <sub>2</sub> |
|---------|-------------|----------------|
| image   | +1/3        | +1/2           |
| rhyme   | +1/3        | 0              |
| control | -2/3        | -1/2           |

22

| some parameters are not what they're expected to be |                                          |                                    |                                  |                                            |  |  |
|-----------------------------------------------------|------------------------------------------|------------------------------------|----------------------------------|--------------------------------------------|--|--|
| (Intercept)<br>badx1<br>badx2                       | Estimate Std.<br>8.000<br>6.000<br>4.000 | Error t<br>1.349<br>1.726<br>3.451 | value<br>5.930<br>3.477<br>1.159 | Pr(> t )<br>2.54e-06<br>0.00173<br>0.25660 |  |  |

23

what happens if we use dummy codes?

| group   | $\lambda_1$ | λ <sub>2</sub> |
|---------|-------------|----------------|
| image   | 1           | 0              |
| rhyme   | 0           | 1              |
| control | 0           | 0              |

## what is the intercept? what are the slopes?

|             | Estimate | Std. | Error | t | value | Pr(> t ) |
|-------------|----------|------|-------|---|-------|----------|
| (Intercept) | 6.000    |      | 1.220 |   | 4.917 | 3.8e-05  |
| D1          | 6.000    |      | 1.726 |   | 3.477 | 0.00173  |
| D2          | 4.000    |      | 1.726 |   | 2.318 | 0.02827  |
|             |          |      |       |   |       |          |

Note that even though dummy codes are not orthogonal (for linear algebra reasons that I don't fully understand), the slopes are what we want them to be

25

