categorical predictors (part 4: ANOVA)

February 7, 2024

1

a concrete	e example	
 in a (hypotheti memory strate assigned to lea strategies: forr study the list; a recall test the main result 	cal) study designe gies, participants rn a list of words n a mental image ifter study & a de ts are	ed to test different were randomly using one of three ; find a rhyme; or just to lay, they're given a
	group 1 control 2 image 3 rhyme	м 6 12 10

2

what happens if we use dummy codes?

group	<i>D</i> ₁	<i>D</i> ₂
image		
rhyme		
control		

	C3:		
elDummy)			
timate Std.	Error t	value	Pr(> t)
6.000	1.220	4.917	3.8e-05
6.000	1.726	3.477	0.00173
4.000	1.726	2.318	0.02827
	1Dummy) timate Std. 6.000 6.000 4.000	Dummy) timate Std. Error t 6.000 1.220 6.000 1.726 4.000 1.726	1Dummy) timate Std. Error t value 6.000 1.220 4.917 6.000 1.726 3.477 4.000 1.726 2.318

R defaults to dummy codes • the summary of lm(memory ~ group) is Estimate Std. Error t value Pr(>|t|) 1.220 4.917 3.8e-05 *** 6.000 (Intercept) groupimage 3.477 0.00173 ** 6.000 1.726 grouprhyme 4.000 1.726 2.318 0.02827 * summary(modelDummy) **Estimate** Std. Error t value Pr(>|t|) (Intercept) 6.000 1.220 4.917 3.8e-05 D1 6.000 1.726 3.477 0.00173 4.000 1.726 2.318 0.02827 D2

7

8

pairwise comparisons

- very often the contrasts of interest in a one-factor study are simply comparisons between all possible pairs of groups
- this is clunky to execute using orthogonal contrasts
- it requires redoing analyses multiple times and ignoring some results
- the pairwise.t.test function is handy for executing only pairwise comparisons
- it comes with an argument that allows one to control Type I errors ...

controlling Type I error rates

- if each hypothesis test one does comes with a .05 error rate ...
- ... doing many hypothesis tests leads to a *familywise error rate* of > .05
- FWER = the probability of at least one Type I error in a *family* of contrasts
- important digression: what is a family?
 - is it all the hypothesis tests you do in your career?
 - is it all the hypothesis tests you do in one manuscript?
 - is it all the hypothesis tests you do for one model?

10

controlling Type I error rates

- use the Bonferroni (or Dunn-Bonferroni) procedure if your contrasts are *planned*
- if *c* = the number of contrasts you'll perform
- use an alpha level of .05/c to decide significance
- e.g., if you're doing 5 contrasts

$$\alpha = .05/_5 = .01$$

- alternatively, take each p and multiply it by c, and then compare to α (probably .05)

11

controlling the "false discovery rate"

- the Bonferroni procedure is designed to minimize the probability of at least one Type I error occurring
- other procedures are designed to minimize the proportion of Type I errors that occur (the "false discovery rate")
- a simple one is the Benjamini-Hochberg procedure

BH procedure

- for any family of contrasts
 - find *p*-values for contrasts
 - rank the p-values from p_1 to p_K (small to large)
 - if p_K < FWER, all are significant
 - if not, check if $p_{K-1} < FWER / 2$; all remaining significant
 - if not, check if $p_{K-2} < FWER / 3$; etc.

13

controlling Type I error rates

- for unplanned (post-hoc, data-snooping) contrasts, use Scheffe's procedure
- it's the method of last resort

14

writing about results

Three pairwise comparisons were executed by orthogonal contrasts. To control the Type I error rate, a Bonferroni-corrected $\alpha = .05/3 = .017$ was used. The imagery group (M = 12) had significantly better memory than the control group (M = 6), t(27) = 3.48, p = .001. The rhyme group (M = 10) had nonsignificantly better memory than the control group (M = 6), t(27) = 2.32, p = .03. The imagery and rhyme groups also did not differ significantly, t(27) = 1.16, p = .26.

or ...

Three pairwise comparisons were executed by orthogonal contrasts. To control the Type I error rate, Bonferroni-corrected *p*-values were used with α = .05. The imagery group (M = 12) had significantly better memory than the control group (M = 6), t(27) = 3.48, p = .005. The rhyme group (M = 10) had non-significantly better memory than the control group (M = 6), t(27) = 2.32, p = .085. The imagery and rhyme groups also did not differ significantly, t(27) = 1.16, p = .77.

16