welcome again

January 22, 2024

1

polynomial/power predictors ("nonlinear" regression)

some terminology

we can handle this nonlinearity with a linear model

• how can a nonlinear relationship be handled by a linear model?

 when a predictor is transformed (e.g., by squaring), the relationship between the transformed predictor and the outcome is linear

$$Y = b_0 + b_1 X + b_2 X^2$$

• as X² increases, Y increases linearly

4

fitting a simple model $T\widehat{IME} = b_0 + b_1 MILES$ • $b_1 = -0.28$, SE = 0.03, t(78) = -9.47, p = very small • this suggests that more training is associated with shorter race times

we can add a parameter to model the change in slope $T\widehat{IME} = b_0 + b_1 MILES$

 $\widehat{TIME} = b_0 + b_1 M + b_2 M^2$

b₁ captures the "linear" relationship at MILES = 0

• $2b_2$ captures the change in b_1 as miles changes

- why **2***b*₂? because the slope of a tangent line is based on the derivative of a function
- the derivative of M^2 is 2M

interpreting parameters			
(Intercept) MILES.c M2	Estimate 22.053552 -0.279100 0.007941	Std. Error 0.581916 0.027734 0.002331	t value 37.898 -10.063 3.407

what would the slope be at miles = 40?

```
• the long way 
TIME = 22.05 - 0.28M_c + 0.008M_c^2
slope = -0.28 + 2*0.008M_c
```

```
• in M<sub>c</sub> terms, 40 miles is 10.125
slope = -0.28 + 2*0.008(10.125)
slope = -0.12
```

16

what would the slope be at miles = 40?
the easy way
center miles at 40 and re-do the analysis
(Intercept) M40 M40sq
20.041722950 -0.118298736 0.007940781

