
\qquad
\qquad 2
what if there's only one predictor but it doesn't have a constant slope?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

some terminology

- we can handle this nonlinearity with a linear model
- how can a nonlinear relationship be handled by a linear model?
- when a predictor is transformed (e.g., by squaring), the relationship between the transformed predictor and the outcome is linear

$$
Y=b_{0}+b_{1} X+b_{2} X^{2}
$$

- as X^{2} increases, Y increases linearly
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4

a sample data set
• outcome = time to complete 5 K race
• predictor = number of miles run per week (training)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6

7
fitting a simple model

$$
\widehat{T I M E}=b_{0}+b_{1} M I L E S
$$

- $b_{1}=-0.28, S E=0.03, t(78)=-9.47, p=$ very small
- this suggests that more training is associated with shorter race times

8
what's wrong with this model?

10
we can add a parameter to model the change in slope

$$
\begin{gathered}
\widehat{T I M E}=b_{0}+b_{1} \text { MILES } \\
\widehat{T I M E}=b_{0}+b_{1} M+b_{2} M^{2}
\end{gathered}
$$

- b_{1} captures the "linear" relationship at MILES $=\mathbf{0}$
- $2 b_{2}$ captures the change in b_{1} as miles changes
- why $2 b_{2}$? because the slope of a tangent line is based on the derivative of a function
- the derivative of M^{2} is $2 M$

11
interpreting parameters

Estimate Std. Error t value
(Intercept) 22.0535520 .58191637 .898
$\begin{array}{llll}\text { MILES.C } & -0.279100 & 0.027734 & -10.063\end{array}$
$\begin{array}{llll}\text { M2 } & 0.007941 & 0.002331 & 3.407\end{array}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13

14

what would the slope be at miles $=40$?

- the long way

TIME $=22.05-0.28 M_{c}+0.008 M_{c}{ }^{2}$ slope $=-0.28+2 * 0.008 M_{c}$

- in M_{c} terms, 40 miles is 10.125

$$
\begin{gathered}
\text { slope }=-0.28+2 * 0.008(10.125) \\
\text { slope }=-0.12
\end{gathered}
$$

16

17

