

1
(hypothetical) data reminder

2

parameter estimates

- miles is mean-centered
- the how-to for this will be in this week's drill

Estimate Std. Error t value
(Intercept) 22.0535520 .58191637 .898
$\begin{array}{llll}\text { MILES.c } & -0.279100 & 0.027734 & -10.063\end{array}$

M2	0.007941	0.002331	3.407

- the slope for MILES.c is the relationship between MILES and TIME only when MILES.C $=0$ (i.e., at the mean) (point slope)
- the slope for M2 is (half) the rate at which the slope of MILES changes for each unit increase in miles

4

5
how to decide what power predictor to add

- if the relationship changes slope (e.g., from positive to negative) once, a squared predictor may work
- if the relationship changes slope twice (e.g., from + to - to + again), a cubed predictor may work
\qquad
\square
\qquad

7
monotonic vs nonmonotonic relationships

- a monotonic relationship is one in which as one variable increases, so does the other (or vice versa) \qquad
- this may be linear or nonlinear
- a non-monotonic relationship is one in which the direction of the relationship changes as the value of
\qquad
\qquad the predictor changes

8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11
options with monotonic nonlinear relationships

- instead of adding a power predictor, you can simply transform either the predictor and/or the outcome to linearize the relationship
- which transformation? see Tukey \& Mosteller's bulging rule

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

options with monotonic nonlinear relationships

- instead of adding a power predictor, you can simply transform either the predictor and/or the outcome to linearize the relationship
- which transformation? see Tukey \& Mosteller's bulging rule
- you can add a power predictor
- pro: you can accommodate the changing $X-Y$ relationship
- con: just like with interactions, the interpretation of slopes is complex
- spline regression (read about it here if you're curious)

16
how do you know if you should add a power predictor?

- in an ideal world, a theoretical prediction will guide your modeling
- but you should look at your data
- scatterplots, esp. with the geom_smooth() function, will help you visualize what's going on
- as always, be clear in how you decided to analyze data; don't HARK (hypothesize after results are known) - clearly identify exploratory analyses as such ... and then replicate!

17
significance testing polynomial
slopes

- for the following model

$$
Y=b_{0}+b_{1} X+b_{2} X^{2}
$$

- what's the null hypothesis for b_{2} ?
- $b_{2}=0$ (precisely, $B_{2}=0$)

$$
Y=b_{0}+b_{1} X+O X^{2}
$$

interpretation caution

- the significance test for b_{1} is a test of only the linear slope at a particular value of X; it is NOT a test of the main effect of X
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

a suggested protocol

- if you are interested in both the linear and quadratic effect of a predictor
- do things sequentially
- fit a one-predictor model first (and interpret b_{1})

$$
Y=b_{0}+b_{1} X
$$

- then add in the power predictor (and interpret b_{2})

$$
Y=b_{0}+b_{1} X+b_{2} X^{2}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

step 1: the linear-only model

Estimate $\quad S E \quad t \operatorname{Pr}(>|t|)$
(Intercept) 23.552250 .4060957 .998 < 2e-16 $\begin{array}{llllll}\text { MILES.C } & -0.27980 & 0.02956 & -9.466 & 1.35 e-14\end{array}$

SSE $=1029.0$, Error df: 78, R-squared: 0.5346

In general, there is a strong negative linear relationship between miles of training per week and 5 K times, $\mathrm{b}=-0.28, \mathrm{t}(78)=-9.5, \mathrm{p}<.001, \mathrm{R}^{2}=.53$.

22

step 2: adding the quadratic term

	Estimate	SE	t	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	22.053552	0.581916	37.898	$<2 \mathrm{e}-16$
MILES.C	-0.279100	0.027734	-10.063	$1.09 \mathrm{e}-15$
M2	0.007941	0.002331	3.407	0.00105
SSE $=894.2$,	Error df: 77, R-squared $=0.5956$			

The quadratic relationship is significant, $\mathrm{b}=0.008, \mathrm{t}(77)=3.4, \mathrm{p}=.001$, $\Delta R^{2}=.051$. The relationship between training and 5 K times is less negative as training increases.

23

24
examples in the literature (\#1)

The Too-Much-Talent Effect: Team Interdependence Determines When More Talent Is Too Much or Not Enough
앙
Roderick I. Swaab ${ }^{1}$, Michael Schaerer ${ }^{1}$, Eric M. Anicich ${ }^{2}$, Richard Ronay ${ }^{3}$, and Adam D. Galinsky ${ }^{2}$

Columbat Univecsaty and
vu Univesity Amsertam
examples in the literature (\#1)

26
examples in the literature (\#1)
 25

examples in the literature (\#1)		
Table 2. The Impact of Talent on Football Teams' Performance in Study $2(n=415)$		
Predictor	Model 1	Model 2
Talent	$1.84{ }^{-\cdots}(0.16)$	${ }^{4.585}$
${ }_{\text {chen }}^{\substack{\text { Talent-squared } \\ \text { Roster size }}}$	${ }_{0.04 \text {-mem }^{-}(0.01)}$	
Games played		${ }^{0.020+*}(0.01)$
Intercept	$4.63^{\text {e* (0.11) }}$	4.58*** (0.11)
Note: Standard errors are reported in parentheses. The corrected for Model 1 and 2,979.62 for Model 2. 		

\qquad

examples in the literature (\#1)

Results were consistent with the lay intuition documented in Studies 1a and 1b, in that the linear relationship between talent and team performance was positive and significant (Table 2, Model 1). However, Study 2 also revealed a significant quadratic effect of top talent: Top talent benefited performance only up to a point, after which the marginal benefit of talent decreased and turned negative (Table 2, Model 2; Fig. 2). The linear and curvilinear effects remained significant when control variables were omitted $(b=5.95, S E=0.42, p<.001$, and $b=-4.98$, $S E=0.57, p<.001$, respectively).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 28
examples in the literature (\#2)

Judgrent and Decision Making, Vab.11, No.4, July 2016, pp. 352-36e
\qquad
\qquad
Are neoliberals more susceptible to bullshit?
\qquad

\qquad

 Keywerds. posticaal ideology, beoliteralism, cognitive style, cognitibe ability, bullstit rexplivity \qquad
\qquad
29

examples in the literature (\#2)

Table 2: Linear models predicting bullshit receptivity.			
	Model I		Model 2

\qquad
\qquad
\qquad
\qquad
\qquad
stronger endorsement of free market ideology
\qquad

examples in the literature (\#2)

3.2.1 Quadratic effects of ideological extremity

To explore the possibility that ideological extremists would be more susceptible to bullshit than moderates, we centered free market ideology scores at the mean and computed a quadratic term. In an initial model, we observed a significant quadratic relationship such that those who were moderate in terms of their support for the free market appeared to be more susceptible to bullshit than extremists in either direction, $b=-.00027, S E=.00012, t(160)=-2.25, p=.026$ (see Figure 1 and Table 3).

examples in the literature (\#2)

Free Market Ideology	Model I		Model 2		Model 3	
Linear effect	. 005	$(.003)^{+}$. 002	(.003)	. 003	(.003)
Quadratic effect	-.00027	(.00012)*	-. 00016	(.00011)	-.00012	(.00012)
Need for Cognition			. 001	(.003)		
Heuristics and Biases			-.807	(.295)**		
Faith in Intuition			. 009	(.003)**		
Numeracy					-. 305	(.215)
Verbal Intelligence					-.775	(.394) ${ }^{\text {\% }}$
Abstract Reasoning					-.398	(.327)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
32

examples in the literature (\#2)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

