- Problem Set 2 will be posted late this afternoon and due on Monday
- Problem Set 1 is graded and an answer key is posted (written with optimism at 10:30am)

My name	Other names	R function	faux function
Treatment	Treatment, Dummy, Dummy, Simple	contr.treatment	contr_code_treatment
Deviation	Deviation, Simple, Contrast	contr.treatment - 1/k	contr_code_deviation
Difference	Forward/Backward, Contrast, Repeated	MASS::contr.sdif	contr_code_difference
Sum	Sum, Sum, Deviation, Deviation, Effects	contr.sum	contr_code_sum
Heimert	Reverse Helmert, Reverse Helmert, Difference	<pre>contr.helmert / column_i</pre>	contr_code_helmert
Polynomial	Polynomial, Orthogonal, Trend	contr.poly	contr_code_poly

1

categorical predictors (part 2: dichotomous predictors, ANOVA, and *t*-tests)

January 31, 2024

2

review 1

- in a design with two groups, we can create one numeric predictor, X, to indicate group membership
- for this single predictor, we estimate one parameter, a slope
- the numbers chosen for the groups matter for the interpretation of the slope parameter estimate

review 2

- generally, we will prefer contrast codes to indicate group membership
- contrast codes are those that sum to zero
- for two-group designs, $X = \pm \frac{1}{2}$ will have some nice benefits for interpretation of the associated slope

4

what does $X = \pm \frac{1}{2}$ buy us?						
• data from • (assign the	 data from Monday (M_{exercise} = 23, M_{control} = 20) (assign the positive value to higher mean to get a positive slope) 					
Coefficients	Coefficients:					
	Estimate	SE	t	Pr(> t)		
(Intercept)	21.5000	0.5244	41.00	< 2e-16	***	
groupHalfs	3.0000	1.0488	2.86	0.00763	**	

one other common coding scheme: *dummy codes*

- if one group is given a value of X = 0 and the other a value of X = 1, this is called *dummy coding*
- this is R's default if you don't create your own X
- typically 0 is assigned to a control/comparison/ reference group (but R will assign it alphabetically)
- what does dummy-coding buy us?

```
        Estimate
        SE
        t Pr(>|t|)

        (Intercept)
        20.0000
        0.7416
        26.97
        < 2e-16</td>
        ***

        groupDummy
        3.0000
        1.0488
        2.86
        0.00763
        **
```

7

building an ANOVA summary table

$$SSE(C) = \sum (Y_i - \hat{Y}_{iC})^2$$

$$SSE(C) = \sum (Y_i - \bar{Y})^2$$
often called SS_{total}

building an ANOVA summary table

$$SSE(A) = \sum (Y_i - \hat{Y}_{iA})^2$$

 $SSE(A) = \sum (Y_i - \bar{Y}_{group})^2$
many aliases: $SS_{residual}$, SS_{within} , SS_{error}

building an ANOVA summary table

$$SSR = \sum_{i} (\hat{Y}_{iA} - \hat{Y}_{iC})^{2}$$

$$SSR = \sum_{i} (\bar{Y}_{group} - \bar{Y})^{2}$$

$$SSR = \sum_{k} n_{k} (\bar{Y}_{group} - \bar{Y})^{2}$$
many aliases: SS_{reduction}, SS_{between}, SS_{regression}

source	SS	df	MS	F	PRE
reduction	SSR	PA – PC	MSR	MSR/MSE(A)	SSR/SSE(C)
error	SSE(A)	n – PA	MSE(A)		
total	SSE(C)	n – 1	MSE(C)		
reduction	72	1	72	8.18	.214
error	264	30	8.8		
total	336	31			
	> anova() Analysis Response groupHal	nodelBest) of Variance : stride Df Sum Sq fs 1 72	Table Mean Sq F v 72.0 8.	alue Pr(>F) 1818 0.007633 **	

a confidence interval for
$$\mathcal{B}_1$$

$$b \pm \sqrt{\frac{F_{crit} \times MSE}{(n-1)s_X^2 \times tolerance}}$$

$$3 \pm \sqrt{\frac{4.17 \times 8.8}{31 \times 0.26 \times 1}} = 3 \pm 2.14 = [0.86, 5.14]$$
• note that this is also the CI for $\mu_1 - \mu_2$
• if the CI does not contain 0, H_0 can be rejected

13

digression: the independent-samples *t*-test

• to test the null hypothesis

 $H_0: \mu_1 = \mu_2$

• we can calculate t via the following steps

- 1. find pooled variance
- 2. find SE of the difference between two independent means
- 3. find *t*

pooled variance

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_1^2}{n_1 + n_2 - 2}$$

$$\frac{15 \times 10.667 + 15 \times 6.933}{30} = 8.8$$

SE $SE = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$ $SE = \sqrt{\frac{8.815}{16} + \frac{8.815}{16}} \approx 1.05$

16

t $t=\frac{\bar{Y}_1-\bar{Y}_2}{SE}$ $t = \frac{23 - 20}{1.05} = 2.86$

17

an alternative (and popular) effect-size measure: Cohen's d

- *R*² (*PRE*) measures proportion of variance accounted for by Model A not accounted for by Model C
- Cohen's d is a measure of the difference between two means, standardized

$$d = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{s_p^2}}$$
$$d = \frac{23 - 20}{\sqrt{8.815}} = 1.01$$

what does Cohen's d indicate?

- how much difference there is between two group means, counting in SDs

 (very much like a z-score)
- alternatively, it's an estimate of how different the average individual in one population is from an average individual in another population (in SDs)

 $d \, \widehat{=} \, \delta$

• under duress, Cohen suggested using .2, .5, and .8 as guidelines for small, medium, and large effects

19

using one X for >2 groups will usually induce nonlinearity

- we will need m 1 new variables to numerically code our m groups
- the numbers we choose to indicate group membership will depend on what we want our slopes to tell us (among other constraints)

22

we need more Xs

- if we have m groups, we need m 1 predictors (Xs), no more, no less
- the predictors should be contrast codes

$$\sum \lambda_k = 0$$

• in addition to using contrasts codes, the contrasts should be *orthogonal* (independent)

23

orthogonality

defined mathematically

$$\sum \lambda_{1k}\lambda_{2k}=0$$

• what?!

• let's look at some Xs for a three-group design and check for orthogonality

three (m = 3) groups \rightarrow two Xs, with the value of λ assigned to each

group	λ_1	λ ₂	$\lambda_1 \lambda_2$
Α	1	0	
В	0	1	
С	0	0	

25

three (m = 3) groups \rightarrow two Xs, with the value of λ assigned to each

group	λ_1	λ2	$\lambda_1 \lambda_2$
А	1	0	
В	0	1	
С	-1	-1	

26

three (m = 3) groups \rightarrow two Xs, with the value of λ assigned to each

group	λ_1	λ ₂	$\lambda_1 \lambda_2$
А	2	0	
В	-1	1	
С	-1	-1	