announcements

- welcome back!
- Problem Set 7 is due on Wednesday
- there will be drill this week
- it will cover analysis of continuous-by-group interactions and basic mediation analysis

1

general exam feedback

- be thorough in interpreting interactions

The Difference Between "Significant" and "Not
Significant" is not Itself Statistically Significant
Andrew Gelman \& Hal Stern

- power analysis is hard; please check the answer key re: 3 g \& ask questions if you have them \qquad
\qquad
2

announcements

- Problem Set 7 is due on Wednesday
- there will be drill this week
- it will cover analysis of continuous-by-group interactions and basic mediation analysis \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

conceptually

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 7

what is the problem?

- with correlated predictors (i.e., tolerance < 1), giving credit for overlapping variance explained is complicated
- depends on causal priority; which predictor influences the outcome first
- ANCOVA, when done sequentially, assumes the covariate influences the outcome before the grouping variable does
- if this is incorrect, interpreting group differences controlling for a covariate is fraught w/difficulty
- as Cohen \& Cohen put it (with my slight edits for provinciality), the difference in mean height between the Himalayan and Ozark mountains, adjusting for differences in atmospheric pressure, is about zero

8

sensitive content: CSA

9

problematic data w/actual Ms

10

11
special design issue: pretest-posttest

- imagine we're interested in comparing the effectiveness of two methods of teaching reading
- at the beginning of a school year, we give students a standardized test; call this variable Z
- students are randomly assigned to learn to read by one of the two methods; call this variable X
- at the end of the year, the students take the same standardized test; call this variable Y
- how should we analyze this?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

we have options:

first, change scores ($Y-Z$)

- the model for this would be

$$
Y_{i}-Z_{i}=\beta_{0}+\beta_{1} X_{1}+\varepsilon_{i}
$$

- rearranging this by moving Z to the right side

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+Z_{i}+\varepsilon_{i}
$$

- this implies that the slope of Z is 1 ; it's not an estimated parameter

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+1 Z_{i}+\varepsilon_{i}
$$

13

we have options:

second, an ANCOVA

- the model for this would be

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z_{i}+\varepsilon_{i}
$$

- because we've added a parameter $\left(\beta_{2}\right)$ instead of setting it equal to 1 , this will give us a better fit
- if you have change scores, do an ANCOVA w/pretest scores as a covariate
- the main exception is if the β_{2} estimate is ≈ 1, then the $1 d f$ cost to estimate it might not be worth it
- if you work in an area where change scores are commonly used, read around to see how others handle them

14
other third-variable patterns (covariates, confounds, mediators, etc.)

https://papers.ssrn.com/sol3/papers.cfm?abstract id=3689437

\qquad
\qquad
\qquad
\qquad
\qquad

16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17
covariates, confounds, mediators

X 2 is a (partial) confound

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19
covariates, confounds, mediators

20
mediation
(Baron \& Kenny, 1986; Hayes, 2009; Rucker et al., 2011)

- if one variable influences another through an intervening variable, the intervening variable is typically called a mediator \qquad
\qquad
\qquad
\qquad
\qquad

mediation

- if one variable influences another through an intervening variable, the intervening variable is typically called a mediator

22

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
23

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

total $=$ direct + indirect

- total effect of X on $Y=c$
- direct effect of X on $Y=c^{\prime}$
- indirect effect of X on Y via $\mathrm{M}=a b$
- $c=c^{\prime}+a b$
- $a b=c-c^{\prime}$ (the indirect effect $=$ total - direct)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 25

Baron \& Kenny's
 causal steps approach

1) regress Y on $X: c$ must be significant
2) regress M on $X: a$ must be significant
3) regress Y on $X \& M$: b must be significant

- if $c>c^{\prime}$ and c^{\prime} is significant \rightarrow "partial mediation"
- if $c>c^{\prime}$ and c^{\prime} is NS \rightarrow "full mediation"

But this approach has low power!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
26

an example

- adolescents diagnosed with bipolar disorder are randomly assigned to a treatment group (a family counseling intervention + the usual pharmaceutical \qquad regimen) or a control group (only the pharmaceutical)
- the outcome is a measure of symptoms taken at 8 weeks after treatment begins
- we suspect that the counseling will be effective by reducing criticism; this is measured at 7 weeks
(Intercept) $5.1000 \quad 0.2739 \quad 18.623 \quad 3.29 \mathrm{e}-13$

X	1.6000	0.5477	2.921	0.00912

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
29

