announcements

- Problem Set 7 is due right about now
- Problem Set 8 will be assigned later and due on Monday
- Drill will be happening tomorrow as usual

1

my inbox is full of bad news

Interacting With Curves: How to Validly Test and Probe Interactions in the Real (Nonlinear) World

Uri simonsohn © 8 yiew all authors and atiliations
Allaticles hetps//doi.org/10.1177/25152459231207787
(4) PDF/ePub © More

Abstract
Hypotheses involving interactions in which one variable modifies the association between another two are ven common. They are typically tested relying on models that assume effects are linear, for example, with a regression like $y=\mathbf{a}+\mathbf{b x}+\mathbf{c z}+\mathbf{d} \times \times$. In the real world, however, few effects are linear, invalidating inferences about interactions For instance, in realistic situations, the false-positive rate can be 100% for detecting an interaction, and a probed interaction can reliably produce estimated effects of the wrong sign. In this article, I propose a revised toolbox for studying interactions in a curvilinear-robust manner, giving correct answers "even" when effects are not linear. It is applicable to most study designs and produces results that are analogous to those of current-often invalidpractices. The presentation combines statistical intuition, demonstrations with published results, and simulations.

2

mediation analysis

March 27, 2024

an example

- adolescents diagnosed with bipolar disorder are randomly assigned to a treatment group (a family counseling intervention + the usual pharmaceutical regimen) or a control group (only the pharmaceutical)
- the outcome is a measure of symptoms taken at 8 weeks after treatment begins
- we suspect that the counseling will be effective by reducing criticism; this is measured at 7 weeks

4

5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6
model 3: symptoms \sim tx + crit

	Estimate Std. Error t value		$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	2.8365	0.9847	2.881	0.0104
X	0.7238	0.6123	1.182	0.2535
C	0.7302	0.3077	2.373	0.0297

$a^{*} b=1.2^{*} 0.73=0.876=c-c^{\prime}=1.6-0.724=0.876 \quad$
7

alternative approach: Sobel test

- test the $a b$ path's significance using the Sobel test

$$
z=\frac{a b}{\sqrt{a^{2} S E_{\mathrm{a}}^{2}+b^{2} S E_{\mathrm{b}}^{2}}}
$$

- works best with large samples
- doesn't require a and b to both be significant
- alternative denominator formulas exist
- note that this is also a test of $c-c^{\prime}$

8

alternative approach:

bootstrapping

- the sampling distribution of $a b$ tends to be nonnormal
- the original data is sampled (with replacement) at random
- this provides estimates of $a b$ assuming H_{0} (no mediation) to be true
- do this many times (1000s, at least) to generate an empirical sampling distribution, allowing the generation of a Cl

please visit quantpsy.org/medn.htm

10

11
drawing conclusions about mediation is hard

\qquad

Yes, But What's the Mechanism? (Don't Expect an Easy Answer) \qquad
John G. Bul that are very favorable to mediation analysisi: experiments in which
both a treatment and a mediator are manipulated. Persistent threats verity of New Yoik to inference do not imply that mediation analysis is hopeless, but as they do imply that impediments to understanding mediation are
a fundamental rather than the consecuences of paticulur statistical fundamental, rather than the consequences of particular statistical an procedures or research designs. In practice, it is often impossible to ${ }^{4}$ draw conclusions about mediation without invoking strong and ${ }_{e x}=$ in invoked, the data requirements for persuasive mediation analysi ${ }_{4} 4$ typically entail drawing on numerous studies. Throughout this sa a cumulative enterprise Persuasive conclusions about mediation are difficult to reach under any circumstances, but they are most likely to be reached when they derive from an experimental research program that addresses the particular challenges of mediation analysis-challenges that we describe here

mediation:

what we think is happening

- if one variable influences another through an intervening variable, the intervening variable is typically called a mediator

13

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
colliders:
similar mathematically

16

an example of collider bias

- imagine you are interested in the relationship between intelligence (indexed by IQ) and conscientiousness
- you find a large sample of college students and find $r=-.37$
- what?!
hetp://www.the100.ci/2017/03/14/that-one-weird-third.variable-problem-nobodyever-mentions-conditioning:-on-a-collider/

17

what's going on?

- college students tend to be higher IQ that the general population; they also tend to be higher with respect to conscientiousness
- that is, both of these variables are predictors of college-student membership; they "collide"
- so selecting from the college-student population "conditions on a collider", creating a (strange) relationship that doesn't exist in the whole population

19

20

third-variable patterns (problems?), cataloged

- confounds
- colliders
- suppressors
- mediators
- covariates
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819361/ https://www.ncbi.nlm.nih.gov/pubmed/28575894

