This is due at 2:00 p.m. on Monday, April 15 on Blackboard, preferably in an R file.

Use the data at right for \#1, \#2, \& \#3 (these are also stored here in a .csv file):

A1	A2	A3
28	32	36
31	35	39
36	37	44
26	30	37
29	31	33

1) Treat the data above as if they were from a between-subjects design (with $n=5$ per cell) and perform an ANOVA, however you see fit. (Make sure A is a factor! Use R's default dummy-coding. Or create your own. Or create contrast codes. Whatever works for you.) Report the values of $S S_{\text {between }} S S_{\text {within }}$, and $S S_{\text {total, }}$ which you might know better as SSR and SSE for the augmented model and SSE an intercept-only model, respectively; the first two values should sum to the third.
2) Now treat the data above as if they were from a repeated-measures design, such that the first row represents Subject 1, the second row Subject 2, and so on. There is an id variable in the data file, so you don't need to add it yourself. Make sure id is a factor. If you don't do this, R will treat it as if the numbers are meaningful; the numbers have no numeric meaning!
a. Perform an ANOVA and report/figure out the values of SS for factor A and SS for subjects/persons. If you use ezANOVA - which I recommend here! - SSn for the intercept is SS for subjects/persons. (SSn stands for SS for the numerator. SSd stands for SS for the denominator.)
b. How are the various SSs from \#1 related to those from \#2? (What's the same? What's different? Do any two things add up to another thing? Et cetera.)
c. Notice that the F-ratio is quite a bit larger in \#2 than in \#1. Say why, being sure to say something about the relationship between $S S_{\text {residual }}$ (also known as $S S_{\text {error }}$ and $S S_{\text {within }}$) from \#1 and the $S S d$ values that ezANOVA produces.
3) Now model the data once more using 7 mer in the 1 me 4 package. Verify that the F-ratio that 7 mer reports is the same that you found for the analysis in \#2. (This equivalence breaks down once designs get more complicated.)
